Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

3-Aminoisobutyric acid

From Wikipedia, the free encyclopedia
(Redirected fromΒ-Aminoisobutyric acid)
Product of thymine metabolism
"BAIBA" redirects here. For the name, seeBaiba.
3-Aminoisobutyric acid
Skeletal formula of 3-aminoisobutyric acid
Ball-and-stick model of the 3-aminoisobutyric acid molecule
Names
Preferred IUPAC name
3-Amino-2-methylpropanoic acid
Other names
3-Aminoisobutyrate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.005.132Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C4H9NO2/c1-3(2-5)4(6)7/h3H,2,5H2,1H3,(H,6,7) checkY
    Key: QCHPKSFMDHPSNR-UHFFFAOYSA-N checkY
  • InChI=1/C4H9NO2/c1-3(2-5)4(6)7/h3H,2,5H2,1H3,(H,6,7)
    Key: QCHPKSFMDHPSNR-UHFFFAOYAN
  • CC(CN)C(=O)O
  • O=C(O)C(C)CN
Properties
C4H9NO2
Molar mass103.12 g/mol
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

3-Aminoisobutyric acid (also known asβ-aminoisobutyric acid orBAIBA) is a product formed by the catabolism ofthymine andvaline.[1]

During exercise, the increase ofPGC-1α protein triggers the secretion of BAIBA from exercising muscles into the blood (concentration2 to 3 μM in human serum). When BAIBA reacheswhite fat tissue, it activates the expression ofthermogenic genes viaPPARα receptors, resulting inbrowning of white fat cells.[2] One of the consequences of BAIBA activity is increased background metabolism of BAIBA target cells.

BAIBA is thought to play a number of roles in cell metabolism, regulation of fat burning, and regulation ofinsulin,blood triglycerides, andtotal cholesterol.[3][4][5]

BAIBA is found as a normalmetabolite ofskeletal muscle (myokine). Its plasma concentrations are increased by exercise.[6] The increased production is likely a result of enhanced mitochondrial activity,[7] as this increase is also observed in muscle of PGC-1a overexpression mice. BAIBA is a proposed protective factor againstmetabolic disorders since it can inducebrown fat function.[2] Buthealthy diet with exercise isbetter.[8][9][6][10][11][12]

See also

[edit]

References

[edit]
  1. ^Yi, Xuejie; Yang, Yang; Li, Tao; Li, Menghuan; Yao, Tingting; Hu, Guangxuan; Wan, Genmeng; Chang, Bo (2023)."Signaling metabolite β-aminoisobutyric acid as a metabolic regulator, biomarker, and potential exercise pill".Frontiers in Endocrinology.14 1192458.doi:10.3389/fendo.2023.1192458.ISSN 1664-2392.PMC 10258315.PMID 37313446.
  2. ^abRoberts LD, Boström P, O'Sullivan JF, Schinzel RT, Lewis GD, Dejam A, et al. (7 January 2014)."β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors".Cell Metabolism.19 (1):96–108.doi:10.1016/j.cmet.2013.12.003.PMC 4017355.PMID 24411942.
  3. ^Begriche K, Massart J, Fromenty B (June 2010). "Effects of β-aminoisobutyric acid on leptin production and lipid homeostasis: mechanisms and possible relevance for the prevention of obesity".Fundamental & Clinical Pharmacology.24 (3):269–82.doi:10.1111/j.1472-8206.2009.00765.x.PMID 19735301.S2CID 2520238.
  4. ^Ibrahim A, Neinast M, Arany ZP (June 2017)."Myobolites: muscle-derived metabolites with paracrine and systemic effects".Current Opinion in Pharmacology.34:15–20.doi:10.1016/j.coph.2017.03.007.PMC 5651206.PMID 28441626.
  5. ^Tanianskii DA, Jarzebska N, Birkenfeld AL, O'Sullivan JF, Rodionov RN (February 2019)."Beta-Aminoisobutyric Acid as a Novel Regulator of Carbohydrate and Lipid Metabolism".Nutrients.11 (3): 524.doi:10.3390/nu11030524.PMC 6470580.PMID 30823446.
  6. ^abHoffmann, Christoph; Weigert, Cora (2017-11-01)."Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations".Cold Spring Harbor Perspectives in Medicine.7 (11) a029793.doi:10.1101/cshperspect.a029793.ISSN 2157-1422.PMC 5666622.PMID 28389517.
  7. ^Yan, Lu; Liu, Chu-Han; Xu, Li; Qian, Yi-Yun; Song, Ping-Ping; Wei, Min; Liu, Bao-Lin (2022-12-27)."Alpha-Asarone modulates kynurenine disposal in muscle and mediates resilience to stress-induced depression via PGC-1α induction".CNS Neuroscience & Therapeutics.29 (3):941–956.doi:10.1111/cns.14030.ISSN 1755-5949.PMC 9928554.PMID 36575869.
  8. ^Mo, Qiaoling; Deng, Xinquan; Zhou, Ziyu; Yin, Lijun (2025-05-16)."High-Fat Diet and Metabolic Diseases: A Comparative Analysis of Sex-Dependent Responses and Mechanisms".International Journal of Molecular Sciences.26 (10): 4777.doi:10.3390/ijms26104777.ISSN 1422-0067.PMC 12112597.PMID 40429918.Females benefit from high-fiber diets that optimize gut microbiota and modulate estrogen levels to reduce breast cancer risk [198], whereas males require restricted refined carbohydrate intake to mitigate MetS predisposition [199]. While protein consumption enhances energy metabolism in both sexes, females exhibit superior muscle anabolic responses [200,201]. Lipid regulation strategies also diverge: clinical data show that omega-3 and monounsaturated fatty acids preferentially support female cardiovascular health [202], while males require focused monounsaturated fat intake for adiposity control [203]. The Mediterranean diet exerts stronger cardioprotective effects on males via anti-inflammatory mechanisms [204], whereas ketogenic diets may compromise female gut barrier integrity despite short-term weight loss [205]. Micronutrient antioxidants (e.g., vitamins C/E, selenium, zinc) alleviate HFD-induced metabolic stress by scavenging reactive oxygen species and stabilizing hormonal balance [206,207], with iron supplementation being particularly critical for female physiology [208].
  9. ^Izquierdo, Mikel; de Souto Barreto, Philipe; Arai, Hidenori; Bischoff-Ferrari, Heike A.; Cadore, Eduardo L.; Cesari, Matteo; Chen, Liang-Kung; Coen, Paul M.; Courneya, Kerry S.; Duque, Gustavo; Ferrucci, Luigi; Fielding, Roger A.; García-Hermoso, Antonio; Gutiérrez-Robledo, Luis Miguel; Harridge, Stephen D. R. (January 2025)."Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR)".The Journal of Nutrition, Health & Aging.29 (1) 100401.doi:10.1016/j.jnha.2024.100401.ISSN 1760-4788.PMC 11812118.PMID 39743381.
  10. ^Murphy, Chaise; Koehler, Karsten (2021-10-08). "Energy deficiency impairs resistance training gains in lean mass but not strength: A meta-analysis and meta-regression".Scandinavian Journal of Medicine & Science in Sports.32 (1):125–137.doi:10.1111/sms.14075.ISSN 1600-0838.PMID 34623696.individuals performing RT to preserve LM during weight loss should avoid energy deficits >500 kcal/day.
  11. ^Gheonea, Theodora Claudia; Oancea, Carmen-Nicoleta; Mititelu, Magdalena; Lupu, Elena Carmen; Ioniță-Mîndrican, Corina-Bianca; Rogoveanu, Ion (2023-11-20)."Nutrition and Mental Well-Being: Exploring Connections and Holistic Approaches".Journal of Clinical Medicine.12 (22): 7180.doi:10.3390/jcm12227180.ISSN 2077-0383.PMC 10672474.PMID 38002792.
  12. ^Moszak, Małgorzata; Marcickiewicz, Justyna; Pelczyńska, Marta; Bogdański, Paweł (2025-05-13)."The Interplay Between Psychological and Neurobiological Predictors of Weight Regain: A Narrative Review".Nutrients.17 (10): 1662.doi:10.3390/nu17101662.ISSN 2072-6643.PMC 12114007.PMID 40431402.
purine
metabolism
anabolism
R5PIMP:
IMPAMP:
IMPGMP:
catabolism
pyrimidine
metabolism
anabolism
catabolism
uracil:
thymine:
Retrieved from "https://en.wikipedia.org/w/index.php?title=3-Aminoisobutyric_acid&oldid=1320479757"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp