Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikibooksThe Free Textbook Project
Search

Fractals/Iterations in the complex plane/q-iterations

From Wikibooks, open books for an open world
<Fractals
Julia set drawn by inverse iteration of critical orbit ( in case of Siegel disc )
Periodic external rays of dynamic plane made with backward iteration

Iteration in mathematics refer to the process of iterating a function i.e. applying a function repeatedly, using the output from one iteration as the input to the next.[1] Iteration of apparently simple functions can produce complex behaviours and difficult problems.[2]

Applications

[edit |edit source]

One can make inverse ( backward iteration) :

  • of repeller for drawing Julia set ( IIM/J)[3]
  • of circle outside Jlia set (radius=ER) for drawing level curves of escape time ( which tend to Julia set)[4]
  • of circle inside Julia set (radius=AR) for drawing level curves of attract time ( which tend to Julia set)[5]
  • of critical orbit ( in Siegel disc case) for drawing Julia set ( probably only in case of Goldem Mean )
  • for drawing external ray

Repellor for forward iteration is attractor for backward iteration

Notes

[edit |edit source]
  • Iteration is always on the dynamic plane.
  • There is no dynamic on the parameter plane.
  • Mandelbrot set carries no dynamics. It is a set of parameter values.
  • There are no orbits on parameter plane, one should not draw orbits on parameter plane.
  • Orbit of critical point is on the dynamical plane

Iteration theory

[edit |edit source]

It is a section fromTetration forum by Andrew Robbins 2006-02-15 by Andrew Robbins

"Iteration is fundamental to dynamics, chaos, analysis, recursive functions, and number theory. In most cases the kind of iteration required in these subjects is integer iteration, i.e. where the iteration parameter is an integer. However, in the study of dynamical systems continuous iteration is paramount to the solution of some systems.

Differentkinds of iteration can be classified as follows:

  • Discrete Iteration
    • Integer Iteration
    • Fractional Iteration or Rational Iteration
      • Non-analytic Fractional Iteration
      • analytic Fractional Iteration
  • Continuous Iteration

Discrete iteration

[edit |edit source]

Iterated function

Integer iteration

[edit |edit source]

The usual definition of iteration, where the functional equation:

fn(x)=f(fn1(x)){\displaystyle f^{n}(x)=f(f^{n-1}(x))}

is used to generate the sequence:


{f(x),f2(x),f3(x),...}{\displaystyle \{f(x),f^{2}(x),f^{3}(x),...\}}

known as the natural iterates of f(x), which forms a monoid under composition.


For invertible functions f(x), the inverses are also considered iterates, and form the sequence:

{...,f2(x),f1(x),x,f(x),f2(x),...}{\displaystyle \{...,f^{-2}(x),f^{-1}(x),x,f(x),f^{2}(x),...\}}

known as the integer iterates of f(x), which forms a group under composition.

Fractional Iteration or Rational Iteration

[edit |edit source]

Solving the functional equation:f(x)=gn(x){\displaystyle f(x)=g^{n}(x)}. Once this functional equation is solved, then the rational iteratesf(m/n)(x){\displaystyle f^{(m/n)}(x)} are the integer iterates ofg(x){\displaystyle g(x)}.

Non-analytic Fractional Iteration

[edit |edit source]

By choosing a non-analytic fractional iterate, there is no uniqueness of the solutions obtained. (Iga's method)

Analytic Fractional Iteration

[edit |edit source]

By solving for an analytic fractional iterate, there is a unique solution obtained in this way. (Dahl's method)

Continuous Iteration

[edit |edit source]

A generalization of the usual notion of iteration, where the functional equation (FE): f n(x) = f(f n-1(x)) must be satisfied for all n in the domain (real or complex). If this is not the case, then to discuss these kinds of "iteration" (even though they are not technically "iteration" since they do not obey the FE of iteration), we will talk about them as though they were expressions for f n(x) where 0 ≤ Re(n) ≤ 1 and defined elsewhere by the FE of iteration. So even though a method is analytic, if it doesn't satisfy this fundamental FE, then by this re-definition, it is non-analytic.

Non-analytic Continuous Iteration

[edit |edit source]

By choosing a non-analytic continuous iterate, there is no uniqueness of the solutions obtained. (Galidakis' and Woon's methods)

Analytic Continuous Iteration or just Analytic Iteration

[edit |edit source]

By solving for an analytic continuous iterate, there is a unique solution obtained in this way.

Real-analytic Iteration

[edit |edit source]

Complex-analytic Iteration or Holomorphic Iteration

[edit |edit source]

Step

[edit |edit source]
  • Integer
  • Fractional
  • Continuous Iteration of Dynamical Maps.[8][9] This continuous iteration can be discretized by the finite element method and then solved—in parallel—on a computer.


visualisation

[edit |edit source]

decomposition

[edit |edit source]

Move during iteration in case of complex quadratic polynomial is complex. It consists of 2 moves :

  • angular move = rotation ( see doubling map)
  • radial move ( see external and internal rays, invariant curves )
    • fallin into target set and attractor ( in hyperbolic and parabolic case )
  • radial move
  • Radius abs(z) = r < 1.0 after some iterations using f0(z) = z*z
    Radius abs(z) = r < 1.0 after some iterations using f0(z) = z*z
  • Distance between repetive iteration of point smaller then one
    Distance between repetive iteration of point smaller then one
  • angular move
  • angle 1/7 after doubling map
    angle 1/7 after doubling map
  • angle 1/15 after doubling map
    angle 1/15 after doubling map
  • angle 11/36 after doubling map
    angle 11/36 after doubling map



angular move (rotation)

[edit |edit source]

Compute argument in turns[14] of the complex number :

/*gives argument of complex number in turns*/doubleGiveTurn(doublecomplexz){doublet;t=carg(z);t/=2*pi;// now in turnsif(t<0.0)t+=1.0;// map from (-1/2,1/2] to [0, 1)return(t);}

direction

[edit |edit source]

forward

[edit |edit source]

backward

[edit |edit source]
Transition between real and imaginary part of the multi-valued complex square root function

Backward iteration or inverse iteration[15]

  • Peitgen
  • W Jung
  • John Bonobo[16]

Peitgen

[edit |edit source]
/* Zn*Zn=Z(n+1)-c */Zx=Zx-Cx;Zy=Zy-Cy;/* sqrt of complex number algorithm from Peitgen, Jurgens, Saupe: Fractals for the classroom */if(Zx>0){NewZx=sqrt((Zx+sqrt(Zx*Zx+Zy*Zy))/2);NewZy=Zy/(2*NewZx);}else/* ZX <= 0 */{if(Zx<0){NewZy=sign(Zy)*sqrt((-Zx+sqrt(Zx*Zx+Zy*Zy))/2);NewZx=Zy/(2*NewZy);}else/* Zx=0 */{NewZx=sqrt(fabs(Zy)/2);if(NewZx>0)NewZy=Zy/(2*NewZx);elseNewZy=0;}};if(rand()<(RAND_MAX/2)){Zx=NewZx;Zy=NewZy;}else{Zx=-NewZx;Zy=-NewZy;}

Mandel

[edit |edit source]

Here is example of c code of inverse iteration using code from programMandel by Wolf Jung

/*/* gcc i.c -lm -Wall ./a.outz = 0.000000000000000  +0.000000000000000 iz = -0.229955135116281  -0.141357981605006 iz = -0.378328716195789  -0.041691618297441 iz = -0.414752103217922  +0.051390827017207 i*/#include<stdio.h>#include<math.h> // M_PI; needs -lm also#include<complex.h>/* find c in component of Mandelbrot set   uses code by Wolf Jung from program Mandel   see function mndlbrot::bifurcate from mandelbrot.cpp   http://www.mndynamics.com/indexp.html*/doublecomplexGiveC(doubleInternalAngleInTurns,doubleInternalRadius,unsignedintPeriod){//0 <= InternalRay<= 1//0 <= InternalAngleInTurns <=1doublet=InternalAngleInTurns*2*M_PI;// from turns to radiansdoubleR2=InternalRadius*InternalRadius;doubleCx,Cy;/* C = Cx+Cy*i */switch(Period)// of component{case1:// main cardioidCx=(cos(t)*InternalRadius)/2-(cos(2*t)*R2)/4;Cy=(sin(t)*InternalRadius)/2-(sin(2*t)*R2)/4;break;case2:// only one componentCx=InternalRadius*0.25*cos(t)-1.0;Cy=InternalRadius*0.25*sin(t);break;// for each iPeriodChild  there are 2^(iPeriodChild-1) roots.default:// higher periods : to do, use newton methodCx=0.0;Cy=0.0;break;}returnCx+Cy*I;}/* mndyncxmics::root from mndyncxmo.cpp  by Wolf Jung (C) 2007-2014. */// input = x,y// output = u+v*I = sqrt(x+y*i)complexdoubleGiveRoot(complexdoublez){doublex=creal(z);doubley=cimag(z);doubleu,v;v=sqrt(x*x+y*y);if(x>0.0){u=sqrt(0.5*(v+x));v=0.5*y/u;returnu+v*I;}if(x<0.0){v=sqrt(0.5*(v-x));if(y<0.0)v=-v;u=0.5*y/v;returnu+v*I;}if(y>=0.0){u=sqrt(0.5*y);v=u;returnu+v*I;}u=sqrt(-0.5*y);v=-u;returnu+v*I;}// from mndlbrot.cpp  by Wolf Jung (C) 2007-2014. part of Madel 5.12// input : c, z , mode// c = cx+cy*i where cx and cy are global variables defined in mndynamo.h// z = x+y*i//// output : z = x+y*icomplexdoubleInverseIteration(complexdoublez,complexdoublec,charkey){doublex=creal(z);doubley=cimag(z);doublecx=creal(c);doublecy=cimag(c);// f^{-1}(z) = inverse with principal valueif(cx*cx+cy*cy<1e-20){z=GiveRoot(x-cx+(y-cy)*I);// 2-nd inverse function = key bif(key=='B'){x=-x;y=-y;}// 1-st inverse function = key areturn-z;}//f^{-1}(z) =  inverse with argument adjusteddoubleu,v;complexdoubleuv;doublew=cx*cx+cy*cy;uv=GiveRoot(-cx/w-(cy/w)*I);u=creal(uv);v=cimag(uv);//z=GiveRoot(w-cx*x-cy*y+(cy*x-cx*y)*I);x=creal(z);y=cimag(z);//w=u*x-v*y;y=u*y+v*x;x=w;if(key=='A'){x=-x;y=-y;// 1-st inverse function = key a}returnx+y*I;// key b =  2-nd inverse function}/*f^{-1}(z) =  inverse with argument adjusted    "When you write the real and imaginary parts in the formulas as complex numbers again,       you see that it is sqrt( -c / |c|^2 )  *  sqrt( |c|^2 - conj(c)*z ) ,     so this is just sqrt( z - c )  except for the overall sign:    the standard square-root takes values in the right halfplane,  but this is rotated by the squareroot of -c .    The new line between the two planes has half the argument of -c .    (It is not orthogonal to c ...  )"    ...    "the argument adjusting in the inverse branch has nothing to do with computing external arguments.  It is related to itineraries and kneading sequences,  ...    Kneading sequences are explained in demo 4 or 5, in my slides on the stripping algorithm, and in several papers by Bruin and Schleicher.    W Jung " */doublecomplexGiveInverseAdjusted(complexdoublez,complexdoublec,charkey){doublet=cabs(c);t=t*t;z=csqrt(-c/t)*csqrt(t-z*conj(c));if(key=='A')z=-z;// 1-st inverse function = key a// else key == 'B'returnz;}// make iMax inverse iteration with negative sign ( a in Wolf Jung notation )complexdoubleGivePrecriticalA(complexdoublez,complexdoublec,intiMax){complexdoubleza=z;inti;for(i=0;i<iMax;++i){printf("i = %d ,  z = (%f, %f)\n ",i,creal(za),cimag(za));za=InverseIteration(za,c,'A');}printf("i = %d ,  z = (%f, %f)\n ",i,creal(za),cimag(za));returnza;}// make iMax inverse iteration with negative sign ( a in Wolf Jung notation )complexdoubleGivePrecriticalA2(complexdoublez,complexdoublec,intiMax){complexdoubleza=z;inti;for(i=0;i<iMax;++i){printf("i = %d ,  z = (%f, %f)\n ",i,creal(za),cimag(za));za=GiveInverseAdjusted(za,c,'A');}printf("i = %d ,  z = (%f, %f)\n ",i,creal(za),cimag(za));returnza;}intmain(){complexdoublec;complexdoublez;complexdoublezcr=0.0;// critical pointintiMax=10;intiPeriodChild=3;// period ofintiPeriodParent=1;c=GiveC(1.0/((double)iPeriodChild),1.0,iPeriodParent);// root point = The unique point on the boundary of a mu-atom of period P where two external angles of denominator = (2^P-1) meet.z=GivePrecriticalA(zcr,c,iMax);printf("iAngle = %d/%d  c = (%f, %f); z = (%.16f, %.16f)\n ",iPeriodParent,iPeriodChild,creal(c),cimag(c),creal(z),cimag(z));z=GivePrecriticalA2(zcr,c,iMax);printf("iAngle = %d/%d  c = (%f, %f); z = (%.16f, %.16f)\n ",iPeriodParent,iPeriodChild,creal(c),cimag(c),creal(z),cimag(z));return0;}

Test

[edit |edit source]

One can iterate ad infinitum. Test tells when one can stop

  • bailout test for forward iteration

Target set or trap

[edit |edit source]

Target set is used in test. When zn is inside target set then one can stop the iterations.

Planes

[edit |edit source]

Parameter plane

[edit |edit source]

"Mandelbrot set carries no dynamics. It is a set of parameter values. There are no orbits on parameter plane, one should not draw orbits on parameter plane. Orbit of critical point is on the dynamical plane"

Dynamic plane

[edit |edit source]
  "The polynomial Pc maps each dynamical ray to another ray doubling the angle (which we measure in full turns, i.e. 0 = 1 = 2π rad = 360◦), and the dynamical rays of any polynomial “look like straight rays” near infinity. This allows us to study the   Mandelbrot and Julia sets combinatorially, replacing the dynamical plane by the unit circle, rays by angles, and the quadratic polynomial by the doubling modulo one map." Virpi K a u k o[17]

Dynamic plane f0 for c=0

[edit |edit source]
Equipotential curves (in red) and integral curves (in blue) of a radial vector field with the potential functionϕ(x,y)=x2+y2{\displaystyle \phi (x,y)={\sqrt {x^{2}+y^{2}}}}

Lets take c=0, then one can call dynamical planef0{\displaystyle f_{0}} plane.

Here dynamical plane can be divided into :

Forward iteration

[edit |edit source]
The 10 first powers of a complex number inside the unit circle
Exponential spirals
Principle branch of arg

z=reiθ{\displaystyle z=re^{i\theta }\,}

where :

  • r is theabsolute value ormodulus ormagnitude of a complex number z = x + i
  • θ{\displaystyle \theta } is the argument of complex number z (in many applications referred to as the "phase") is the angle of the radius with the positive real axis. Usually principal value is used
r=|z|=x2+y2.{\displaystyle r=|z|={\sqrt {x^{2}+y^{2}}}.\,}
θ=arg(z)=atan2(y,x)={arctan(yx)if x>0arctan(yx)+πif x<0 and y0arctan(yx)πif x<0 and y<0π2if x=0 and y>0π2if x=0 and y<0indeterminate if x=0 and y=0.{\displaystyle \theta =\arg(z)=\operatorname {atan2} (y,x)={\begin{cases}\arctan({\frac {y}{x}})&{\mbox{if }}x>0\\\arctan({\frac {y}{x}})+\pi &{\mbox{if }}x<0{\mbox{ and }}y\geq 0\\\arctan({\frac {y}{x}})-\pi &{\mbox{if }}x<0{\mbox{ and }}y<0\\{\frac {\pi }{2}}&{\mbox{if }}x=0{\mbox{ and }}y>0\\-{\frac {\pi }{2}}&{\mbox{if }}x=0{\mbox{ and }}y<0\\{\mbox{indeterminate }}&{\mbox{if }}x=0{\mbox{ and }}y=0.\end{cases}}}

so

f0(z)=z2=(reiθ)2=r2ei2θ{\displaystyle f_{0}(z)=z^{2}=(re^{i\theta })^{2}=r^{2}e^{i2\theta }\,}

and forward iteration :[18]

f0n(z)=r2nei2nθ{\displaystyle f_{0}^{n}(z)=r^{2^{n}}e^{i2^{n}\theta }\,}

Forward iteration:

  • squares radius and doubles angle ( phase, argument)[19][20]
  • gives forward orbit =list of points {z0, z1, z2, z3... , zn} which lays on exponential spirals.[21][22]

One can check it interactively :

Chaos and the complex squaring map
[edit |edit source]

The informal reason why the iteration is chaotic is that the angle doubles on every iteration and doubling grows very quickly as the angle becomes ever larger, but angles which differ by multiples of 2π radians are identical. Thus, when the angle exceeds 2π, it mustwrap to the remainder on division by 2π. Therefore, the angle is transformed according to the dyadic transformation (also known as the 2x mod 1 map). As the initial valuez0 has been chosen so that its argument is not a rational multiple of π, the forward orbit ofzn cannot repeat itself and become periodic.

More formally, the iteration can be written as:

zn+1=zn2{\displaystyle \qquad z_{n+1}=z_{n}^{2}}

wherezn{\displaystyle z_{n}} is the resulting sequence of complex numbers obtained by iterating the steps above, andz0{\displaystyle z_{0}} represents the initial starting number. We can solve this iteration exactly:

zn=z02n{\displaystyle \qquad z_{n}=z_{0}^{2^{n}}}

Starting with angle θ, we can write the initial term asz0=exp(iθ){\displaystyle z_{0}=\exp(i\theta )} so thatzn=exp(i2nθ){\displaystyle z_{n}=\exp(i2^{n}\theta )}. This makes the successive doubling of the angle clear. (This is equivalent to the relationzn=cos(2nθ)+isin(2nθ){\displaystyle z_{n}=\cos(2^{n}\theta )+i\sin(2^{n}\theta )}.)

Escape test
[edit |edit source]

If distance between:

is :

distance(z,Jc)=2n{\displaystyle distance(z,J_{c})=2^{-n}}

then point z escapes (= it's magnitude is greate thenescape radius = ER):

|zn|>ER{\displaystyle |z_{n}|>ER}

after :

See also:

Backward iteration

[edit |edit source]
Backward iteration of complex quadratic polynomial with proper chose of the preimage

Every angle (real number) α ∈ R/Z measured in turns has :

Note that difference between these 2 preimages

α2α+12=12{\displaystyle {\frac {\alpha }{2}}-{\frac {\alpha +1}{2}}={\frac {1}{2}}}

is half a turn = 180 degrees = Pi radians.

Images and preimages under doubling map d
α{\displaystyle \alpha }d1(α){\displaystyle d^{1}(\alpha )}d1(α){\displaystyle d^{-1}(\alpha )}
12{\displaystyle {\frac {1}{2}}}11{\displaystyle {\frac {1}{1}}}{14,34}{\displaystyle \left\{{\frac {1}{4}},{\frac {3}{4}}\right\}}
13{\displaystyle {\frac {1}{3}}}23{\displaystyle {\frac {2}{3}}}{16,46}{\displaystyle \left\{{\frac {1}{6}},{\frac {4}{6}}\right\}}
14{\displaystyle {\frac {1}{4}}}12{\displaystyle {\frac {1}{2}}}{18,58}{\displaystyle \left\{{\frac {1}{8}},{\frac {5}{8}}\right\}}
15{\displaystyle {\frac {1}{5}}}25{\displaystyle {\frac {2}{5}}}{110,610}{\displaystyle \left\{{\frac {1}{10}},{\frac {6}{10}}\right\}}
16{\displaystyle {\frac {1}{6}}}13{\displaystyle {\frac {1}{3}}}{112,712}{\displaystyle \left\{{\frac {1}{12}},{\frac {7}{12}}\right\}}
17{\displaystyle {\frac {1}{7}}}27{\displaystyle {\frac {2}{7}}}{114,47}{\displaystyle \left\{{\frac {1}{14}},{\frac {4}{7}}\right\}}

On complex dynamical plane backward iteration using quadratic polynomialfc{\displaystyle f_{c}}

fc(z)=z2+c{\displaystyle f_{c}(z)=z^{2}+c}

gives backward orbit =binary tree of preimages :

z{\displaystyle z\,}

zc,+zc{\displaystyle -{\sqrt {z-c}},+{\sqrt {z-c}}\,}

zcc,+zcc,+zcc,++zcc{\displaystyle -{\sqrt {-{\sqrt {z-c}}-c}},+{\sqrt {-{\sqrt {z-c}}-c}},-{\sqrt {+{\sqrt {z-c}}-c}},+{\sqrt {+{\sqrt {z-c}}-c}}\,}

One can't choose good path in such tree withoutextra informations.

Not that preimages showrotational symmetry ( 180 degrees)

For other functions see Fractalforum[25]


See also:

Dynamic plane for fc

[edit |edit source]

One can check it with :

Level curves of escape or attracting time

[edit |edit source]
  • Preimages of circle from the exterior gives level sets of the escaping time
    Preimages of circle from the exterior gives level sets of the escaping time
  • Preimages of circle from the interior gives level sets of the attracting time
    Preimages of circle from the interior gives level sets of the attracting time

Julia set by IIM/J

[edit |edit source]

Theory

  • the periodic points are dense in the Julia set
  • Julia set is the closure of the set of repelling periodic points

So drawing repelling periodic point and it's orbit ( forward and backward= inverse) gives visually good aproximation of Julia set = set of points dense enough that nonuniform distribution of these points over Julia set is not important.


  • Preimages of repelling fixed point tend to Julia set for C = i. Image and source code
    Preimages of repelling fixed point tend to Julia set for C = i. Image and source code
  • Julia set made with MIIM. Image and maxima source code
    Julia set made with MIIM. Image and maxima source code
  • Preimages of critical orbit tend to whole Julia set in Siegel disc case
    Preimages of critical orbit tend to whole Julia set in Siegel disc case
  • distribution of points in simple IIM/J
    distribution of points in simple IIM/J
  • c = -0.750357820200574 +0.047756163825227 i
    c = -0.750357820200574 +0.047756163825227 i
  • C = ( 0.4 0.3 )
    C = ( 0.4 0.3 )

In escape time one computes forward iteration of point z.

In IIM/J one computes:

Zn1=ZnC{\displaystyle Z_{n-1}={\sqrt {Z_{n}-C}}}

 "We know the periodic points are dense in the Julia set, but in the case of weird ones (like the ones with Cremer points, or even some with Siegel disks where the disk itself is very 'deep' within the Julia set, as measured by the external rays), the periodic points tend to avoid certain parts of the Julia set as long as possible. This is what causes the 'inverse method' of rendering images of Julia sets to be so bad for those cases." Jacques Carette[27]

Becausesquare root ismultivalued function then eachZn{\displaystyle Z_{n}\,} has two preimagesZn1{\displaystyle Z_{n-1}\,}. Thus inverse iteration createsbinary tree of preimages.

  • binary tree
    binary tree
  • expanded growth of binary tree
    expanded growth of binary tree

Because of expanded growth of binary tree, the number of preimagesgrows exponentialy: the number of nodesn{\displaystyle n} in a full binary tree is

n=2h+11{\displaystyle n=2^{h+1}-1}

where

If one wants to draw full binary tree then the methods of storing binary trees can waste a fair bit of memory, so alternative is

  • threaded binary tree
  • draw only some path from binary tree,
    • random path : the longest path = path from root-to-leaf

See also :

Root of tree
[edit |edit source]

"... preimages of the repelling fixed point beta. These form a tree like

                                               beta                    beta                                            -beta   beta                         -beta                    x                     y

So every point is computed at last twice when you start the tree with beta.If you start with -beta, you will get the same points with half the numberof computations.

Something similar applies to the preimages of the critical orbit. If z isin the critical orbit, one of its two preimages will be there as well, so youshould draw -z and the tree of its preimages to avoid getting the samepoints twice." (Wolf Jung )

Variants of IIM
[edit |edit source]
  • random choose one of two roots IIM ( up to chosen level max). Random walk through the tree. Simplest to code and fast, but inefficient. Start from it.
    • both roots with the same probability
    • more often one then other root
  • draw all roots ( up to chosen level max)[31]
    • using recurrence
    • using stack ( faster ?)
  • draw some rare paths in binary tree = MIIM. This is modification of drawing all roots. Stop using some rare paths.
    • using hits table ( while hit(pixel(iX,iY)) < HitMax )[32]
    • using derivative ( while derivative(z) < DerivativeMax)[33][34]:
      • " speed up the calculation by pruning dense branches of the tree. One such method is to prune branches when the map becomes contractive (the cumulative derivative becomes large). " Paul Nylander[35]
      • " We cut off the sub tree from a given if the derivative is greater than the limit. This eliminates dominant highly contractive regions of the inverse iteration, which have already been registered. We can calculate successive derivatives iteratively. Colour by the log of the absolute derivative"[36]

Examples of code :

Maxima CAS source code - simple IIM . Click on the right to view
It is only one function for all codesee here
  finverseplus(z,c):=sqrt(z-c); finverseminus(z,c):=-sqrt(z-c); c:%i;    /*       define c value  */ iMax:5000;  /* maximal number of reversed iterations */ fixed:float(rectform(solve([z*z+c=z],[z])));  /* compute fixed points of f(z,c) :   z=f(z,c)   */ if (abs(2*rhs(fixed[1]))<1)  /* Find which is repelling  */     then block(beta:rhs(fixed[1]),alfa:rhs(fixed[2]))      else block(alfa:rhs(fixed[1]),beta:rhs(fixed[2]));  z:beta; /* choose repeller as a starting point */ /* make 2 list of points and copy beta to lists */  xx:makelist (realpart(beta), i, 1, 1); /* list of re(z) */ yy:makelist (imagpart(beta), i, 1, 1); /* list of im(z) */ for i:1 thru iMax  step 1 do  /* reversed iteration of beta */ block (if random(1.0)>0.5 /* random choose of one of two roots  */   then z:finverseplus(z,c)   else z:finverseminus(z,c),  xx:cons(realpart(z),xx), /* save values to draw it later */  yy:cons(imagpart(z),yy) ); plot2d([discrete,xx,yy],[style,[points,1,0,1]]); /* draw reversed orbit of beta */

Compare it with:

Maxima CAS source code - MIIM using hit table . Click on the right to view
It is only one function for all codesee here
 /* Maxima CAS code */ /* Gives points of backward orbit of z=repellor       */ GiveBackwardOrbit(c,repellor,zxMin,zxMax,zyMin,zyMax,iXmax,iYmax):=  block(   hit_limit:4, /* proportional to number of details and time of drawing */   PixelWidth:(zxMax-zxMin)/iXmax,   PixelHeight:(zyMax-zyMin)/iYmax,   /* 2D array of hits pixels . Hit > 0 means that point was in orbit */   array(Hits,fixnum,iXmax,iYmax), /* no hits for beginning */  /* choose repeller z=repellor as a starting point */  stack:[repellor], /*save repellor in stack */  /* save first point to list of pixels  */   x_y:[repellor],  /* reversed iteration of repellor */  loop,  /* pop = take one point from the stack */  z:last(stack),  stack:delete(z,stack),  /*inverse iteration - first preimage (root) */  z:finverseplus(z,c),  /* translate from world to screen coordinate */  iX:fix((realpart(z)-zxMin)/PixelWidth),  iY:fix((imagpart(z)-zyMin)/PixelHeight),  hit:Hits[iX,iY],  if hit<hit_limit      then     (    Hits[iX,iY]:hit+1,    stack:endcons(z,stack), /* push = add z at the end of list stack */    if hit=0 then x_y:endcons( z,x_y)    ),  /*inverse iteration - second preimage (root) */  z:-z, /* translate from world to screen coordinate, coversion to integer */  iX:fix((realpart(z)-zxMin)/PixelWidth),  iY:fix((imagpart(z)-zyMin)/PixelHeight),  hit:Hits[iX,iY],  if hit<hit_limit      then     (     Hits[iX,iY]:hit+1,     stack:endcons(z,stack), /* push = add z at the end of list stack to continue iteration */     if hit=0 then x_y:endcons( z,x_y)    ),   if is(not emptyp(stack)) then go(loop),  return(x_y) /* list of pixels in the form [z1,z2] */ )$
Octave source code - MIIM using hit table . Click on the right to view
iimm_hit.m:
#octavem-file#IIMusingHittable#saveasaiimm_hit.minoctaveworkingdir#runoctaveandiimm_hit##stack-likeoperation#http://www.gnu.org/software/octave/doc/interpreter/Miscellaneous-Techniques.html#Miscellaneous-Techniques#octavecanresizearray#a=[];#while(condition)#a(end+1)=value;#"push"operation#a(end)=[];#"pop"operation##--------------generaloctavesettings----------clearall;moreoff;pkgloadimage;#imwritepkgloadmiscellaneous;#waitbar#---------------constandvar-----------------------------#definesomeglobalvarATEACHLEVELwhereyouwanttouseit(PascalCdeMills)#?forglobalvariablesonecan'tdefineandgiveinitialvalueatthesametime#integer(screen)coordinateiSide=1000ixMax=iSideiyMax=iSide#globalHitLimit;HitLimit=1#proportionaltonumberofdetailsandtimeofdrawingglobalHits;#2Darrayofpixels.Hit>0meansthatpointwasinorbitHits=zeros(iyMax,ixMax);#imageasa2Dmatrixof24bitcolorscodedfrom0.0to1.0globalMyImage;MyImage=zeros(iyMax,ixMax,3);#matrixfilledwith0.0(blackimage)=[rows,columns,color_depth]#world(float)coordinate-dynamical(Z)planeglobaldSide;globalZxMin;globalZxMax;globalZyMin;globalZyMax;globalz;globalPixelHeight;globalPixelWidth;#addvaluestoglobalvariablesdSide=1.25ZxMin=-dSideZxMax=dSideZyMin=-dSideZyMax=dSidePixelHeight=(ZyMax-ZyMin)/(iyMax-1)PixelWidth=(ZxMax-ZxMin)/(ixMax-1)#pseudostack=resizablearrayglobalStack;Stack=[];globalStackIndex;StackIndex=0;c=complex(.27327401,0.00756218);globalColor24White;Color24White=[1.0,1.0,1.0];#----------------functions------------------function[iY, iX] = f(z)#definesomeglobalvarATEACHLEVELwhereyouwanttouseit(PascalCdeMills)globalZxMin;globalZyMax;globalPixelWidth;globalPixelHeight;#translatefromworldtoscreencoordinateiX=int32((real(z)-ZxMin)/PixelWidth);iY=int32((ZyMax-imag(z))/PixelHeight);#invertyaxisendfunction;#plotpointwithintegercoorfinatetoarrayMyImagefunctionPlot( iY, iX , color)globalMyImage;MyImage(iY,iX,1)=color(1);MyImage(iY,iX,2)=color(2);MyImage(iY,iX,3)=color(3);endfunction;#push=putpointzonthestackfunctionpush(z)globalStack;globalStackIndex;StackIndex=size(Stack,2);#updateglobalvarStackIndex=StackIndex+1;#updateglobalvarStack(StackIndex)=z;#"push"zonpseudostackendfunction;#pop=takepointzfromthestackfunctionz=pop()globalStack;globalStackIndex;StackIndex=size(Stack,2);#updateglobalvarz=Stack(StackIndex);#popzfrompseudostackStack(StackIndex)=[];#makepseudostackshorterStackIndex=StackIndex-1;#updateglobalvarendfunction;functionCheckPoint(z)#errorishereglobalHits;globalHitLimit;globalColor24White;[iY,iX]=f(z);hit=Hits(iY,iX);if(hit<HitLimit)push(z);#(putzonthestack)tocontinueiterationif(hit<1)Plot(iY,iX,Color24White);endif;#plotHits(iY,iX)=hit+1;#updateHitstableendif;endfunction;#CheckPoint#--------------------main---------------------------------------#Determinetheunstablefixedpointbeta#http://en.wikipedia.org/wiki/Periodic_points_of_complex_quadratic_mappingsbeta=0.5+sqrt(0.25-c)z=-betaCheckPoint(z);while(StackIndex>0)#ifstackisnotemptyz=pop();#takepointzfromthestack#computeits2preimageszand-z(inversefunctionofcomplexquadraticpolynomial)z=sqrt(z-c);#checkpoints:draw,putonthestacktocontinueiterationsCheckPoint(z);CheckPoint(-z);endwhile;#-------------------image--------------------------------------imread("a7.png");#firstloadanyexistingimagetoresolvebug:paniccrashusingimwrite:octave:magick/semaphore.c:525firstloadanyimageimage(MyImage);#DisplayImagename=strcat("iim",int2str(HitLimit)," .png");imwrite(MyImage,name);#saveimagetofile.thisrequirestheImageMagick"convert"utility.


See also

See also

[edit |edit source]
  • Dynamical systems
    • Fixed points
    • Lyapunov number
  • Functional equations
    • Abel function
    • Schroeder function
    • Boettcher function
    • Julia function
  • Special matrices
    • Carleman matrix
    • Bell matrix
    • Abel-Robbins matrix

References

[edit |edit source]
  1. wikipedia : Iteration
  2. From local to global theories of iteration by Vaclav Kucera
  3. Inverse Iteration Algorithms for Julia Sets by Mark McClure
  4. Complex iteration by Microcomputadoras
  5. On rational maps with two critical points by John Milnor, fig. 5
  6. Iterated Functions by Tom Davis
  7. The Existence and Uniqueness of the Taylor Series of Iterated Functions by Daniel Geisler
  8. Continuous Iteration of Dynamical Maps R. Aldrovandi, L. P. Freitas (Sao Paulo, IFT)
  9. Continuous_iteration_of_fractals by Gerard Westendorp
  10. how-to-fold-a-julia-fractal by Steven Wittens
  11. Folding a Circle into a Julia Set by Karl Sims
  12. Visual Explanation of the Complexity in Julia Sets by Okke Schrijvers, Jarke J. van Wijk ( see video in the supporting info)
  13. How to Build a Julia Set
  14. turn
  15. Understanding Julia and Mandelbrot Sets by Karl Sims
  16. Une méthode rapide pour tracer les ensembles de Julia : l'itération inverse by John Bonobo
  17. Trees of visible components in the Mandelbrot set by Virpi K a u k o , FUNDAMENTA MATHEMATICAE 164 (2000)
  18. Real and imaginary parts of polynomial iterates by Julia A. Barnes, Clinton P. Curry and Lisbeth E. Schaubroeck. New York J. Math. 16 (2010) 749–761.
  19. mandelbrot-hue by Richard A Thomson
  20. phase by Linas Vepstas
  21. Complex numbers by David E Joyce
  22. Powers of complex numbers from Suitcase of Dreams
  23. Parabolic Julia Sets are Polynomial Time Computable by Mark Braverman
  24. SYMBOLIC DYNAMICS AND SELF-SIMILAR GROUPS by VOLODYMYR NEKRASHEVYCH
  25. Query about general Julia set IFS for higher powers.
  26. wikipedia : repelling fixed point
  27. mathbbc/185430 mathoverflow question: clustering-of-periodic-points-for-a-polynomial-iteration-of-mathbbc
  28. Wolfram Alpha
  29. example
  30. wikipedia : repelling fixed point
  31. Fractint documentation - Inverse Julias
  32. Image and c source code : IIMM using hit limit
  33. Exploding the Dark Heart of Chaos by Chris King
  34. Drakopoulos V., Comparing rendering methods for Julia sets, Journal of WSCG 10 (2002), 155-161
  35. bugman123: Fractals
  36. dhushara : DarkHeart
Retrieved from "https://en.wikibooks.org/w/index.php?title=Fractals/Iterations_in_the_complex_plane/q-iterations&oldid=4445584"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp