Parabolic fixed point of period p is a landing point of p dynamic external rays. These rays divide neighborhood into curvilinear sectors.
Maxima CAS code :
kill(all);remvalue(all);DoublingMap(r):=block([d,n], n:ratnumer(r), d:ratdenom(r), mod(2*n,d)/d)$GivePeriod (r):=block([rNew, rOld, period, pMax, p], pMax:100, period:0, p:1, rNew:DoublingMap(r), while ((p<pMax) and notequal(rNew,r)) do (rOld:rNew, rNew:DoublingMap(rOld), p:p+1 ), if equal(rNew,r) then period:p, period);/* f(z) is used as a global function I do not know how to put it as a argument */GiveOrbit(r0,OrbitLength):=block( [r,Orbit], r:r0, Orbit:[r], for i:1 thru OrbitLength step 1 do ( r:DoublingMap(r), Orbit:endcons(r,Orbit)), return(sort(Orbit)))$compile(all);R: 4985538889/17179869183;p: GivePeriod(R);orbit:GiveOrbit(R, p);/* angles around critical point */e1:first(orbit);e2:last(orbit);
In the elephant valley[1][2] ( from parameter plane ) it is easy to find rays landing on the roots and dynamic external rays that land on the parabolic fixed point z.
| internal angle of main cardioid | parameter c = root point | parameter rays | parabolic fixed point z | dynamic rays |
|---|---|---|---|---|
| 0/1 | (0/1; 1/1) | (1/1) | ||
| 1/2 | (1/3; 2/3) | (1/3; 2/3) | ||
| 1/3 | (1/7; 2/7) | (1/7; 2/7; 4/7) | ||
| 1/4 | (1/15; 2/15) | (1/15; 2/15; 4/15; 8/15) | ||
| 1/5 | (1/31; 2/31) | (1/31; 2/31; 4/31; 8/31; 16/31) | ||
| 1/6 | (1/63; 2/63) | (1/63; 2/63; 4/63, 8/63, 16/33; 32/63) | ||
| 1/7 | (1/127; 2/127) | (1/127; 2/127; 4/127, 8/127, 16/127; 32/127; 64/127) | ||
| 1/p |
Note that :
It is not so simple, as in 1/p case, to compute orbit portrait[7] of parabolic fixed point.
Algorithm :
Methods for computing anglew of the wake:

From all 15 period five components only 4 components are directly connected to the main cardioid[8]
| internal angle of main cardioid | parameter c = root point | parameter rays | parabolic fixed point z | dynamic rays |
|---|---|---|---|---|
| 1/5 | (1/31; 2/31) | (1/31; 2/31; 4/31; 8/31; 16/31) | ||
| 2/5 | -0.504+0.568 i | (9/31,10/31) | (5/31 , 10/31 , 20/31 , 9/31 , 18/31) | |
| 3/5 | (21/31,22/31) | (11/31 , 22/31 , 13/31 , 26/31 , 21/31) | ||
| 4/5 | (29/31,30/31) | (15/31 , 30/31 , 29/31 , 27/31 , 23/31) |

From all 63 period seven components only 6 components are directly connected to the main cardioid[9]
| internal angle of main cardioid | parameter c = root point | parameter rays | parabolic fixed point z | dynamic rays |
|---|---|---|---|---|
| 1/7 | (1/127; 2/127) | (1/127; 2/127; 4/127; 8/127; 16/127, 32/127, 64/127) | ||
| 2/7 | (17/127; 18/127) | (17/127; 34/127; 68/127; 9/127; 18/127, 36/127, 72/127) | ||
| 3/7 | (42/127; 43/127) | (42/127, 84/127, 82/127, 37/127, 74/127, 21/127, 42/127) | ||
| 4/7 | (84/127; 85/127) | (84/127, 41/127, 82/127, 37/127, 74/127, 21/127, 42/127) | ||
| 5/7 | (109/127; 110/127) | (109/127, 91/127, 55/127, 110/127, 93/127, 59/127, 118/127) | ||
| 6/7 | (125/127; 126/127) | (125/127, 123/127, 119/127, 111/127, 95/127, 63/127, 126/127) |
| internal angle of main cardioid | parameter c = root point | parameter rays | parabolic fixed point z | dynamic rays |
|---|---|---|---|---|
| 1/11 | ||||
| 5/11 | -0.6900598700150440+0.2760264827846140i | (681/2047, 682/2047) | -0.4797464868072486+0.1408662784207147i | (341, 597, 661, 677, 681, 682, 1194, 1322, 1354, 1362, 1364)/2047 |
Maxima CAS code using doubling map:
(%i1) m(n,d):=mod(2*n,d)/d $(%i2) m(681,2047); 1362(%o2) ---- 2047(%i3) m(1362,2047); 677(%o3) ---- 2047(%i4) m(677,2047); 1354(%o4) ---- 2047(%i5) m(1354,2047); 661(%o5) ---- 2047(%i6) m(661,2047); 1322(%o6) ---- 2047(%i7) m(1322,2047); 597(%o7) ---- 2047(%i8) m(597,2047); 1194(%o8) ---- 2047(%i9) m(1194,2047); 341(%o9) ---- 2047(%i10) m(341,2047); 682(%o10) ---- 2047(%i11) m(682,2047); 1364(%o11) ---- 2047(%i12) m(1364,2047); 681(%o12) ---- 2047(%i13) m(681,2047); 1362(%o13) ---- 2047
Other version :
kill(all);remvalue(all);DoublingMap(r):=block([d,n], n:ratnumer(r), d:ratdenom(r), mod(2*n,d)/d)$GiveOrbit(r0,OrbitLength):=block( [r,Orbit], r:r0, Orbit:[r], for i:1 thru OrbitLength step 1 do ( r:DoublingMap(r), Orbit:endcons(r,Orbit)), return(sort(Orbit)))$r0: 681/2047$ period : 11; GiveOrbit(r0,period); 341 597 661 677 681 681 682 1194 1322 1354 1362 1364(%o6) [----, ----, ----, ----, ----, ----, ----, ----, ----, ----, ----, ----] 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047float(%o6);(%o7) [0.1665852467024914, 0.2916463116756229, 0.3229115779189057, 0.3307278944797264, 0.3326819736199316, 0.3326819736199316, 0.3331704934049829, 0.5832926233512458, 0.6458231558378115, 0.6614557889594529, 0.6653639472398633, 0.6663409868099658](%i8)
See alsowake 10/21
Maxima 5.45.1 https://maxima.sourceforge.iousing Lisp GNU Common Lisp (GCL) GCL 2.6.12Distributed under the GNU Public License. See the file COPYING.Dedicated to the memory of William Schelter.The function bug_report() provides bug reporting information.(%i1) bash("r.mac");(%o1) bash(r.mac)(%i2) load("r.mac");(%o0) r.mac(%i1) batch("r.mac");read and interpret /home/a/Dokumenty/maxima/rotation/r.mac(%i2) kill(all)(%o0) done(%i1) remvalue(all)(%o1) [](%i2) DoublingMap(r):=block([d,n],n:ratnumer(r),d:ratdenom(r),mod(2*n,d)/d)(%i3) GiveOrbit(r0,OrbitLength):=block([r,Orbit],r:r0,Orbit:[r], for i thru OrbitLength do (r:DoublingMap(r),Orbit:endcons(r,Orbit)), return(sort(Orbit)))(%i4) r0:699049/2097151(%i5) period:21(%i6) GiveOrbit(r0,period) 349525 611669 677205 693589 697685 698709 698965 699029(%o6) [-------, -------, -------, -------, -------, -------, -------, -------, 2097151 2097151 2097151 2097151 2097151 2097151 2097151 2097151 699045 699049 699049 699050 1223338 1354410 1387178 1395370-------, -------, -------, -------, -------, -------, -------, -------, 2097151 2097151 2097151 2097151 2097151 2097151 2097151 20971511397418 1397930 1398058 1398090 1398098 1398100-------, -------, -------, -------, -------, -------]2097151 2097151 2097151 2097151 2097151 2097151(%o7) /home/a/Dokumenty/maxima/rotation/r.mac(%i9) float(%o6);(%o9) [0.166666587193769, 0.2916666467984423, 0.3229166616996106, 0.3307291654249026, 0.3326822913562257, 0.3331705728390564, 0.3332926432097641, 0.333323160802441, 0.3333307902006102, 0.3333326975501525, 0.3333326975501525, 0.3333331743875381, 0.5833332935968846, 0.6458333233992212, 0.6614583308498053, 0.6653645827124514, 0.6663411456781129, 0.6665852864195282, 0.666646321604882, 0.6666615804012205, 0.6666653951003051, 0.6666663487750763](%i10)result without sort(Orbit)
699049 1398098 699045 1398090 699029 1398058 698965(%o6)/R/ [-------, -------, -------, -------, -------, -------, -------, 2097151 2097151 2097151 2097151 2097151 2097151 20971511397930 698709 1397418 697685 1395370 693589 1387178 677205-------, -------, -------, -------, -------, -------, -------, -------, 2097151 2097151 2097151 2097151 2097151 2097151 2097151 20971511354410 611669 1223338 349525 699050 1398100 699049-------, -------, -------, -------, -------, -------, -------]2097151 2097151 2097151 2097151 2097151 2097151 2097151(%o7) /home/a/Dokumenty/maxima/rotation/r.macfloat(%o6);(%o8) [0.3333326975501525, 0.6666653951003051, 0.3333307902006102, 0.6666615804012205, 0.333323160802441, 0.666646321604882, 0.3332926432097641, 0.6665852864195282, 0.3331705728390564, 0.6663411456781129, 0.3326822913562257, 0.6653645827124514, 0.3307291654249026, 0.6614583308498053, 0.3229166616996106, 0.6458333233992212, 0.2916666467984423, 0.5833332935968846, 0.166666587193769, 0.3333331743875381, 0.6666663487750763, 0.3333326975501525]
internal angle 13/27
The 13/27-wake of the main cardioid is bounded by the parameter rays with the angles

See image by Arnaud Cheritat[10]
Angles of the wake external rays ( on parameter plane ) in different formats :[11]
There are 8 589 869 055 components of period 34.
External angle landing on the root points :
where denominator d is :
| internal angle of main cardioid | parameter c = root point | external angles of the wake (decimal fractions) | external angles of the wake ( binary fractions) | parabolic fixed point z | dynamic rays ( orbit portrait , only numerators) |
|---|---|---|---|---|---|
| 1/34 | (1/d; 2/d) | ||||
| 13/34 | -0.392571548476155+0.585781365897037i | (4985538889/d ; 4985538890/d) | (p0100101001001010010100100101001001; p0100101001001010010100100101001010) | -0.3695044586103295 ; 0.3368478218232787 | [4985538889,9971077778,2762286373,5524572746,11049145492,4918421801,9836843602, 2493818021,4987636042,9975272084,2770674985,5541349970,11082699940,4985530697,9971061394,2762253605,5524507210,11049014420,4918159657,9836319314,2492769445,4985538890,9971077780,2762286377,5524572754,11049145508,4918421833,9836843666,2493818149,4987636298,9975272596,2770676009,5541352018,11082704036] |
Widest sector ( which incudes critical component ) is :
( 2492769445/17179869183; 11082704036/17179869183 )
Last componet = component to the left of component including critical point zcr = 0.0. This component is almost not changing when iPeriodChild is increasing , seethis video

See image by Arnaud Cheritat[12]
Let's find some info usingprogram Mandel by Wolf Jung :
t = 34/89 = 0,382022472 // internal angle = rotational number c = -0.390837354761211 +0.586641524321638 i // Parameter cz = -0.368804231870311 +0.337614334047815 i // fixed point alfa
denominator or external angle (computed with this program ) :
Location of root point usingbook program by Claude Heiland-Allen:
1/3 = 0.33333/8 = 0,3758/21 = 0,38095238121/55 = 0,38181818234/89 = 0,38202247213/34 = 0,3823529415/13 = 0,3846153852/5 = 0.41/2 = 0.5
External angles of rays that land on the root point one can compute withbook program by Claude Heiland-Allen :
./mandelbrot_external_angles 53 -3.9089629378291085e-01 5.8676031775674931e-01 89.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001).(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010)
Converting to other forms usinggmp :
decimal fraction = 179622968672387565806504265 / 618970019642690137449562111 decimal canonical form = 179622968672387565806504265/618970019642690137449562111binary fraction = 01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 decimal floating point number : 0.290196557138708685358212600555
decimal fraction = 179622968672387565806504266 / 618970019642690137449562111 decimal canonical form = 179622968672387565806504266/618970019642690137449562111binary fraction = 01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 decimal floating point number : 0.290196557138708685358212602171
Note that difference infloating form of external angles :
0.290 196 557 138 708 685 358 212 602 171 0.290 196 557 138 708 685 358 212 600 555
is on 27-th decimal digit after decimal sign
0.(010 010 100 100 101 001 010 010 010 100 100 101 001 010 010 010 100 101 001 001 010 010 010 100 101 001 001 010 010 01)0.(010 010 100 100 101 001 010 010 010 100 100 101 001 010 010 010 100 101 001 001 010 010 010 100 101 001 001 010 010 10)
and on 88-th binary digit after decimal sign.
Numerators ofthe orbit portrait ( external angles of rays landing on the fixed point alfa ) :
179622968672387565806504265179622968672387565806504265359245937344775131613008530995218550468601257764549491990437100937202515529098983980874201874405031058197961772048207321908687620774813544096414643817375241549628984926328607333759874781317969852657214667519749562635939705314429335039499125299824086645896563340420393199648173291793126680840786399296346583586253361681572179622673524482369273801033359245347048964738547602066995206744552393396456420211990413489104786792912840423980826978209573585825680841771953759992245797155740573543907519984491594311481148981148435420818141273411717962296870841636282546823435924593741683272565093646899521855190975313852310825199043710381950627704621650398087420763901255409243300177204821885112373368924489354409643770224746737848978898492678977593560261358451796985357955187120522716903593970715910374241045433809982412353938471075952464919964824707876942151904929839929649415753884303809859617962296867238754862663508135924593734477509725327016299521855046860057056978213199043710093720114113956426398087420187440228227912852177204820732190319006263593354409641464380638012527186898492632860711385754922611796985265721422771509845223593970531442845543019690449982408664587897115437597719964817329175794230875195439929634658351588461750390817962267352434163178544570535924534704868326357089141099520674454676389692220709199041348909352779384441418398082697818705558768882836177195375994720980088203561354390751989441960176407122898114843361937829032521331796229686723875658065042663592459373447751316130085329952185504686012577645495319904371009372025155290990639808742018744050310581981217720482073219086876207751335440964146438173752415502689849263286073337598747941179698526572146675197495882359397053144293350394991764998240866458965633404214171996481732917931266808428343992963465835862533616856681796226735244823692738092253592453470489647385476184509952067445523933964567478919904134891047867929134957839808269782095735858269915617719537599922457971583620135439075199844915943167240289811484354208181413782693179622968708416362827565386359245937416832725655130772995218551909753138606994331990437103819506277213988663980874207639012554427977321772048218851123734360333533544096437702247468720667068984926789775935629457130117969853579551871258914260235939707159103742517828520499824123539384712907008297199648247078769425814016594399296494157538851628033188