Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikibooksThe Free Textbook Project
Search

Distribution Theory/Elementary operations

From Wikibooks, open books for an open world
<Distribution Theory

Proposition (integral of a continuously varying family of distributions against an integrable function with compact essential support is distribution):

LetΩ{\displaystyle \Omega } be a topological space, together with a locally finite measureμ:F[0,]{\displaystyle \mu :{\mathcal {F}}\to [0,\infty ]}, whereF{\displaystyle {\mathcal {F}}} is aσ{\displaystyle \sigma }-algebra onΩ{\displaystyle \Omega } that contains the Borelσ{\displaystyle \sigma }-algebra onΩ{\displaystyle \Omega }. Suppose further thatfL1(Ω,μ){\displaystyle f\in L^{1}(\Omega ,\mu )} has compactessential support, and that

xTx{\displaystyle x\mapsto T_{x}}, where for eachxΩ{\displaystyle x\in \Omega }, we haveTxD(U){\displaystyle T_{x}\in {\mathcal {D}}'(U)} (resp.TxS(Rn){\displaystyle T_{x}\in {\mathcal {S}}'({\mathcal {R}}^{n})}),

is continuously varying, in the sense that for eachφD(U){\displaystyle \varphi \in {\mathcal {D}}(U)} (resp. inS(Rn){\displaystyle {\mathcal {S}}({\mathcal {R}}^{n})}) the functionxTx(φ){\displaystyle x\mapsto T_{x}(\varphi )} is continuousThen also

T:φΩf(w)Tw(φ)dwD(U){\displaystyle T:\varphi \mapsto \int _{\Omega }f(w)T_{w}(\varphi )dw\in {\mathcal {D}}'(U)} (resp.φΩf(w)Tw(φ)dwS(U){\displaystyle \varphi \mapsto \int _{\Omega }f(w)T_{w}(\varphi )dw\in {\mathcal {S}}'(U)}).

Proof: DefineA:=esssuppf{\displaystyle A:=\operatorname {esssupp} f}, and letφD(U){\displaystyle \varphi \in {\mathcal {D}}(U)} (resp.S(Rn){\displaystyle \in {\mathcal {S}}({\mathcal {R}}^{n})}) be arbitrary. LetxA{\displaystyle x\in A} andϵ>0{\displaystyle \epsilon >0}. Sinceμ{\displaystyle \mu } is locally finite, pick a neighbourhoodUx{\displaystyle U_{x}} ofx{\displaystyle x} such thatμ(Ux)<{\displaystyle \mu (U_{x})<\infty }. SincexTx(φ){\displaystyle x\mapsto T_{x}(\varphi )} is continuous, by shrinkingUx{\displaystyle U_{x}} if necessary, we may assume that foryU{\displaystyle y\in U} we have|Tx(φ)Ty(φ)|ϵ/μ(Ux){\displaystyle |T_{x}(\varphi )-T_{y}(\varphi )|\leq \epsilon /\mu (U_{x})}. SinceA{\displaystyle A} is compact, we may choosex1,,xnA{\displaystyle x_{1},\ldots ,x_{n}\in A} so thatA=Ux1Uxn{\displaystyle A=U_{x_{1}}\cup \cdots \cup U_{x_{n}}}. Now for each arbitrary finite open coverV1,,Vm{\displaystyle V_{1},\ldots ,V_{m}} ofA{\displaystyle A} andxjVj{\displaystyle x_{j}\in V_{j}} forj[m]{\displaystyle j\in [m]} define the distribution

S(V1,,Vm,x1,,xm)(φ):=j=1nVj(Vj1V1)f(w)Txj(φ)dw{\displaystyle S_{(V_{1},\ldots ,V_{m},x_{1},\ldots ,x_{m})}(\varphi ):=\sum _{j=1}^{n}\int _{V_{j}\setminus (V_{j-1}\cup \cdots \cup V_{1})}f(w)T_{x_{j}}(\varphi )dw},

which is indeed a distribution of the required type (D(U){\displaystyle {\mathcal {D}}'(U)} orS(Rn){\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n})}. In the particular case of the cover that was constructed above, note that

|S(Ux1,,Uxn,x1,,xn)(φ)T(φ)|j=1nVj(Vj1V1)|f(w)||Tw(φ)Txj(φ)|dwϵf1{\displaystyle \left|S_{(U_{x_{1}},\ldots ,U_{x_{n}},x_{1},\ldots ,x_{n})}(\varphi )-T(\varphi )\right|\leq \sum _{j=1}^{n}\int _{V_{j}\setminus (V_{j-1}\cup \cdots \cup V_{1})}|f(w)||T_{w}(\varphi )-T_{x_{j}}(\varphi )|dw\leq \epsilon \|f\|_{1}}.

Note further that tuples of the type(V1,,Vm,x1,,xm){\displaystyle (V_{1},\ldots ,V_{m},x_{1},\ldots ,x_{m})}, wherexjVj{\displaystyle x_{j}\in V_{j}} andV1,,Vm{\displaystyle V_{1},\ldots ,V_{m}} is an open cover ofA{\displaystyle A}, form a directed under the relation

(V1,,Vm,x1,,xm)(W1,,Wk,y1,,yk):⇔{x1,,xm}{y1,,yn}j[m]l[k]:WlVj{\displaystyle (V_{1},\ldots ,V_{m},x_{1},\ldots ,x_{m})\leq (W_{1},\ldots ,W_{k},y_{1},\ldots ,y_{k}):\Leftrightarrow \{x_{1},\ldots ,x_{m}\}\subseteq \{y_{1},\ldots ,y_{n}\}\wedge \forall j\in [m]\exists l\in [k]:W_{l}\subseteq V_{j}},

and by the above computation, the net of theS(V1,,Vm,x1,,xm){\displaystyle S_{(V_{1},\ldots ,V_{m},x_{1},\ldots ,x_{m})}} converges pointwise toT{\displaystyle T}. We conclude since thepointwise limit of continuous linear functions from a barrelled LCTVS into a Hausdorff TVS is continuous and linear.{\displaystyle \Box }

Retrieved from "https://en.wikibooks.org/w/index.php?title=Distribution_Theory/Elementary_operations&oldid=3320949"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp