Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikibooksThe Free Textbook Project
Search

Cg Programming/Unity/Debugging of Shaders

From Wikibooks, open books for an open world
<Cg Programming |Unity
A false-color satellite image.

This tutorial discusses vertex input parameters. It assumes that you are familiar withSection “Minimal Shader” andSection “RGB Cube”.

This tutorial also introduces the main technique to debug shaders in Unity: false-color images, i.e. a value is visualized by setting one of the components of the fragment color to it. Then the intensity of that color component in the resulting image allows you to make conclusions about the value in the shader. This might appear to be a very primitive debugging technique because itis a very primitive debugging technique. Unfortunately, there is no alternative in Unity.

Where Does the Vertex Data Come from?

[edit |edit source]

InSection “RGB Cube” you have seen how the fragment shader gets its data from the vertex shader by means of an output structure of vertex output parameters. The question here is: where does the vertex shader get its data from? Within Unity, the answer is that the Mesh Renderer component of a game object sends all the data of the mesh of the game object to the GPU in each frame. (This is often called a “draw call”. Note that each draw call has some performance overhead; thus, it is much more efficient to send one large mesh with one draw call to the GPU than to send several smaller meshes with multiple draw calls.) This data usually consists of a long list of triangles, where each triangle is defined by three vertices and each vertex has certain attributes, including position. These attributes are made available in the vertex shader by means of vertex input parameters. The mapping of different attributes to different vertex input parameters is achieved in Cg by means of semantics, i.e. each vertex input parameter has to specify a certain semantic, e.g.POSITION,NORMAL,TEXCOORD0,TEXCOORD1,TANGENT,COLOR, etc. (In older versions of Unity, the built-in vertex input parameters also had to have specific names, namely the names that are used in this example.)

Built-in Vertex Input Parameters and how to Visualize Them

[edit |edit source]

It is often convenient to included all input vertex parameters in a single structure, e.g.:

structvertexInput{float4vertex:POSITION;// position (in object coordinates,// i.e. local or model coordinates)float4tangent:TANGENT;// vector orthogonal to the surface normalfloat3normal:NORMAL;// surface normal vector (in object// coordinates; usually normalized to unit length)float4texcoord:TEXCOORD0;// 0th set of texture// coordinates (a.k.a. “UV”; between 0 and 1)float4texcoord1:TEXCOORD1;// 1st set of tex. coors.float4texcoord2:TEXCOORD2;// 2nd set of tex. coors.float4texcoord3:TEXCOORD3;// 3rd set of tex. coors.fixed4color:COLOR;// color (usually constant)};

This structure could be used this way:

Shader"Cg shader with all built-in vertex input parameters"{SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment fragstructvertexInput{float4vertex:POSITION;float4tangent:TANGENT;float3normal:NORMAL;float4texcoord:TEXCOORD0;float4texcoord1:TEXCOORD1;float4texcoord2:TEXCOORD2;float4texcoord3:TEXCOORD3;fixed4color:COLOR;};structvertexOutput{float4pos:SV_POSITION;float4col:TEXCOORD0;};vertexOutputvert(vertexInputinput){vertexOutputoutput;output.pos=UnityObjectToClipPos(input.vertex);output.col=input.texcoord;// set the output color// other possibilities to play with:// output.col = input.vertex;// output.col = input.tangent;// output.col = float4(input.normal, 1.0);// output.col = input.texcoord;// output.col = input.texcoord1;// output.col = input.texcoord2;// output.col = input.texcoord3;// output.col = input.color;returnoutput;}float4frag(vertexOutputinput):COLOR{returninput.col;}ENDCG}}}

InSection “RGB Cube” we have already seen, how to visualize the vertex coordinates by setting the fragment color to those values. In this example, the fragment color is set to the texture coordinates such that we can see what kind of texture coordinates Unity provides.

Note that only the first three components oftangent represent the tangent direction. The scaling and the fourth component are set in a specific way, which is mainly useful for parallax mapping (seeSection “Projection of Bumpy Surfaces”).

Pre-Defined Input Structures

[edit |edit source]

Usually, you can achieve a higher performance by only specifying the vertex input parameters that you actually need, e.g. position, normal, and one set of texture coordinates; sometimes also the tangent vector. Unity provides the pre-defined input structuresappdata_base,appdata_tan,appdata_full, andappdata_img for the most common cases. These are defined in the fileUnityCG.cginc (in the directory Unity > Editor > Data > CGIncludes):

structappdata_base{float4vertex:POSITION;float3normal:NORMAL;float4texcoord:TEXCOORD0;};structappdata_tan{float4vertex:POSITION;float4tangent:TANGENT;float3normal:NORMAL;float4texcoord:TEXCOORD0;};structappdata_full{float4vertex:POSITION;float4tangent:TANGENT;float3normal:NORMAL;float4texcoord:TEXCOORD0;float4texcoord1:TEXCOORD1;float4texcoord2:TEXCOORD2;float4texcoord3:TEXCOORD3;fixed4color:COLOR;// and additional texture coordinates only on XBOX360};structappdata_img{float4vertex:POSITION;half2texcoord:TEXCOORD0;};

The fileUnityCG.cginc is included with the line#include "UnityCG.cginc". Thus, the shader above could be rewritten this way:

Shader"Cg shader with all built-in vertex input parameters"{SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include"UnityCG.cginc"structvertexOutput{float4pos:SV_POSITION;float4col:TEXCOORD0;};vertexOutputvert(appdata_fullinput){vertexOutputoutput;output.pos=UnityObjectToClipPos(input.vertex);output.col=input.texcoord;returnoutput;}float4frag(vertexOutputinput):COLOR{returninput.col;}ENDCG}}}

How to Interpret False-Color Images

[edit |edit source]

When trying to understand the information in a false-color image, it is important to focus on one color component only. For example, if the input vertex parametertexcoord with semanticTEXCOORD0 for a sphere is written to the fragment color then the red component of the fragment visualizes thex coordinate oftexcoord, i.e. it doesn't matter whether the output color is maximum pure red or maximum yellow or maximum magenta, in all cases the red component is 1. On the other hand, it also doesn't matter for the red component whether the color is blue or green or cyan of any intensity because the red component is 0 in all cases. If you have never learned to focus solely on one color component, this is probably quite challenging; therefore, you might consider to look only at one color component at a time. For example by using this line to set the output parameter in the vertex shader:

output.col=float4(input.texcoord.x,0.0,0.0,1.0);

This sets the red component of the output parameter to thex component oftexcoord but sets the green and blue components to 0 (and the alpha or opacity component to 1 but that doesn't matter in this shader).

If you focus on the red component or visualize only the red component you should see that it increases from 0 to 1 as you go around the sphere and after 360° drops to 0 again. It actually behaves similar to a longitude coordinate on the surface of a planet. (In terms of spherical coordinates, it corresponds to the azimuth.)

If thex component oftexcoord corresponds to the longitude, one would expect that they component would correspond to the latitude (or the inclination in spherical coordinates). However, note that texture coordinates are always between 0 and 1; therefore, the value is 0 at the bottom (south pole) and 1 at the top (north pole). You can visualize they component as green on its own with:

output.col=float4(0.0,input.texcoord.y,0.0,1.0);

Texture coordinates are particularly nice to visualize because they are between 0 and 1 just like color components are. Almost as nice are coordinates of normalized vectors (i.e., vectors of length 1; for example, thenormal input parameter is usually normalized) because they are always between -1 and +1. To map this range to the range from 0 to 1, you add 1 to each component and divide all components by 2, e.g.:

output.col=float4((input.normal+float3(1.0,1.0,1.0))/2.0,1.0);

Note thatnormal is a three-dimensional vector. Black corresponds then to the coordinate -1 and full intensity of one component to the coordinate +1.

If the value that you want to visualize is in another range than 0 to 1 or -1 to +1, you have to map it to the range from 0 to 1, which is the range of color components. If you don't know which values to expect, you just have to experiment. What helps here is that if you specify color components outside of the range 0 to 1, they are automatically clamped to this range. I.e., values less than 0 are set to 0 and values greater than 1 are set to 1. Thus, when the color component is 0 or 1 you know at least that the value is less or greater than what you assumed and then you can adapt the mapping iteratively until the color component is between 0 and 1.

Debugging Practice

[edit |edit source]

In order to practice the debugging of shaders, this section includes some lines that produce black colors when the assignment tocol in the vertex shader is replaced by each of them. Your task is to figure out for each line, why the result is black. To this end, you should try to visualize any value that you are not absolutely sure about and map the values less than 0 or greater than 1 to other ranges such that the values are visible and you have at least an idea in which range they are. Note that most of the functions and operators are documented inSection “Vector and Matrix Operations”.

output.col=input.texcoord-float4(1.5,2.3,1.1,0.0);
output.col=input.texcoord.zzzz;
output.col=input.texcoord/tan(0.0);

The following lines require some knowledge about the dot and cross product:

output.col=dot(input.normal,input.tangent.xyz)*input.texcoord;
output.col=dot(cross(input.normal,input.tangent.xyz),input.normal)*input.texcoord;
output.col=float4(cross(input.normal,input.normal),1.0);
output.col=float4(cross(input.normal,input.vertex.xyz),1.0);// only for a sphere!

Does the functionradians() always return black? What's that good for?

output.col=radians(input.texcoord);

Summary

[edit |edit source]

Congratulations, you have reached the end of this tutorial! We have seen:

  • The list of built-in vertex input paramters in Unity.
  • How to visualize these parameters (or any other value) by setting components of the fragment output color.

Further reading

[edit |edit source]

If you still want to know more

<Cg Programming/Unity

Unless stated otherwise, all example source code on this page is granted to the public domain.
Retrieved from "https://en.wikibooks.org/w/index.php?title=Cg_Programming/Unity/Debugging_of_Shaders&oldid=3677259"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp