Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikibooksThe Free Textbook Project
Search

Calculus/Polar Integration

From Wikibooks, open books for an open world
<Calculus
Thelatest reviewed version waschecked on25 February 2020. There is1 pending change awaiting review.

Introduction

[edit |edit source]

Integrating a polar equation requires a different approach than integration under the Cartesian system, hence yielding a different formula, which is not as straightforward as integrating the functionf(x){\displaystyle f(x)} .

Proof

[edit |edit source]

In creating the concept of integration, we used Riemann sums of rectangles to approximate the area under the curve. However, with polar graphs, one can use sectors of circles with radiusr{\displaystyle r} and angle measuredθ{\displaystyle d\theta } . The area of each sector is thenπr2dθ2π{\displaystyle \pi r^{2}{\frac {d\theta }{2\pi }}} and the sum of all the infinitesimally small sectors' areas is:12abr2dθ{\displaystyle {\frac {1}{2}}\int \limits _{a}^{b}r^{2}d\theta } , This is the form to use to integrate a polar expression of the formr=f(θ){\displaystyle r=f(\theta )} where(a,f(a)){\displaystyle (a,f(a))} and(b,f(b)){\displaystyle (b,f(b))} are the ends of the curve that you wish to integrate.

Integral calculus

[edit |edit source]
The integration regionR{\displaystyle R} is bounded by the curver=f(θ){\displaystyle r=f(\theta )} and the raysθ=a{\displaystyle \theta =a} andθ=b{\displaystyle \theta =b} .

LetR{\displaystyle R} denote the region enclosed by a curver=f(θ){\displaystyle r=f(\theta )} and the raysθ=a{\displaystyle \theta =a} andθ=b{\displaystyle \theta =b} , where0<ba<2π{\displaystyle 0<b-a<2\pi } . Then, the area ofR{\displaystyle R} is

12abr2dθ{\displaystyle {\frac {1}{2}}\int \limits _{a}^{b}r^{2}d\theta }
The regionR is approximated byn sectors (here,n = 5).

This result can be found as follows. First, the interval[a,b]{\displaystyle [a,b]} is divided inton{\displaystyle n} subintervals, wheren{\displaystyle n} is an arbitrary positive integer. Thusθ{\displaystyle \theta }, the length of each subinterval, is equal toba{\displaystyle b-a} (the total length of the interval), divided byn{\displaystyle n} , the number of subintervals. For each subintervali=1,2,,n{\displaystyle i=1,2,\dots ,n} , letθi{\displaystyle \theta _{i}} be the midpoint of the subinterval, and construct a circular sector with the center at the origin, radiusri=f(θi){\displaystyle r_{i}=f(\theta _{i})} , central angleδθ{\displaystyle \delta \theta } , and arc lengthriδθ{\displaystyle r_{i}\delta \theta } . The area of each constructed sector is therefore equal to12ri2δθ{\displaystyle {\tfrac {1}{2}}r_{i}^{2}\delta \theta } . Hence, the total area of all of the sectors is

i=1n12ri2δθ{\displaystyle \sum _{i=1}^{n}{\tfrac {1}{2}}r_{i}^{2}\delta \theta }

As the number of subintervalsn{\displaystyle n} is increased, the approximation of the area continues to improve. In the limit asn{\displaystyle n\to \infty } , the sum becomes the Riemann integral.

Generalization

[edit |edit source]

Using Cartesian coordinates, an infinitesimal area element can be calculated asdA=dxdy{\displaystyle dA=dx\,dy} . The substitution rule for multiple integrals states that, when using other coordinates, the Jacobian determinant of the coordinate conversion formula has to be considered:

J=det(x,y)(r,θ)=|xrxθyryθ|=|cos(θ)rsin(θ)sin(θ)rcos(θ)|=rcos2(θ)+rsin2(θ)=r{\displaystyle J=\det {\frac {\partial (x,y)}{\partial (r,\theta )}}={\begin{vmatrix}{\dfrac {\partial x}{\partial r}}&{\dfrac {\partial x}{\partial \theta }}\\{\dfrac {\partial y}{\partial r}}&{\dfrac {\partial y}{\partial \theta }}\end{vmatrix}}={\begin{vmatrix}\cos(\theta )&-r\sin(\theta )\\\sin(\theta )&r\cos(\theta )\end{vmatrix}}=r\cos ^{2}(\theta )+r\sin ^{2}(\theta )=r}

Hence, an area element in polar coordinates can be written as

dA=Jdrdθ=rdrdθ{\displaystyle dA=J\,dr\,d\theta =r\,dr\,d\theta }

Now, a function that is given in polar coordinates can be integrated as follows:

Rg(r,θ)dA=ab0r(θ)g(r,θ)rdrdθ{\displaystyle \iint _{R}g(r,\theta )dA=\int \limits _{a}^{b}\int \limits _{0}^{r(\theta )}g(r,\theta )\,r\,dr\,d\theta }

Here,R is the same region as above, namely, the region enclosed by a curver=f(θ){\displaystyle r=f(\theta )} and the raysθ=a{\displaystyle \theta =a} andθ=b{\displaystyle \theta =b} .

The formula for the area ofR{\displaystyle R} mentioned above is retrieved by takingg{\displaystyle g} identically equal to 1.

Applications

[edit |edit source]

Polar integration is often useful when the corresponding integral is either difficult or impossible to do with the Cartesian coordinates. For example, let's try to find the area of the closed unit circle. That is, the area of the region enclosed byx2+y2=1{\displaystyle x^{2}+y^{2}=1} .

In Cartesian

[edit |edit source]

Template:Organize section

111x21x2dydx=2111x2dx{\displaystyle \int \limits _{-1}^{1}\int \limits _{-{\sqrt {1-x^{2}}}}^{\sqrt {1-x^{2}}}\,dy\,dx=2\int \limits _{-1}^{1}{\sqrt {1-x^{2}}}dx}

In order to evaluate this, one usually uses trigonometric substitution. By settingsin(θ)=x{\displaystyle \sin(\theta )=x} , we get bothcos(θ)=1x2{\displaystyle \cos(\theta )={\sqrt {1-x^{2}}}} andcos(θ)dθ=dx{\displaystyle \cos(\theta )d\theta =dx} .

1x2dx=cos2(θ)dθ=1+cos(2θ)2dθ=θ2+sin(2θ)4+C=θ2+sin(θ)cos(θ)2+C=arcsin(x)+x1x22+C{\displaystyle {\begin{aligned}\int {\sqrt {1-x^{2}}}dx&=\int \cos ^{2}(\theta )d\theta \\&=\int {\frac {1+\cos(2\theta )}{2}}d\theta \\&={\frac {\theta }{2}}+{\frac {\sin(2\theta )}{4}}+C\\&={\frac {\theta }{2}}+{\frac {\sin(\theta )\cos(\theta )}{2}}+C\\&={\frac {\arcsin(x)+x{\sqrt {1-x^{2}}}}{2}}+C\end{aligned}}}

Putting this back into the equation, we get

2111x2dx=2[arcsin(x)+x1x22]11=arcsin(1)arcsin(1)=π{\displaystyle {\begin{aligned}2\int \limits _{-1}^{1}{\sqrt {1-x^{2}}}dx&=2\left[{\frac {\arcsin(x)+x{\sqrt {1-x^{2}}}}{2}}\right]_{-1}^{1}\\&=\arcsin(1)-\arcsin(-1)\\&=\pi \end{aligned}}}

In Polar

[edit |edit source]

To integrate in polar coordinates, we first realizer=x2+y2=1=1{\displaystyle r={\sqrt {x^{2}+y^{2}}}={\sqrt {1}}=1} and in order to include the whole circle,a=0{\displaystyle a=0} andb=2π{\displaystyle b=2\pi } .

02π01rdrdθ=02π[r22]01dθ=02πdθ2=[θ2]02π=2π2=π{\displaystyle \int \limits _{0}^{2\pi }\int \limits _{0}^{1}r\,dr\,d\theta =\int \limits _{0}^{2\pi }\left[{\frac {r^{2}}{2}}\right]_{0}^{1}d\theta =\int \limits _{0}^{2\pi }{\frac {d\theta }{2}}=\left[{\frac {\theta }{2}}\right]_{0}^{2\pi }={\frac {2\pi }{2}}=\pi }

An interesting example

[edit |edit source]

A less intuitive application of polar integration yields the Gaussian integral

ex2dx=π{\displaystyle \int \limits _{-\infty }^{\infty }e^{-x^{2}}dx={\sqrt {\pi }}}

Try it! (Hint: multiplyex2dx{\displaystyle \int \limits _{-\infty }^{\infty }e^{-x^{2}}dx} andey2dy{\displaystyle \int \limits _{-\infty }^{\infty }e^{-y^{2}}dy} .)

Retrieved from "https://en.wikibooks.org/w/index.php?title=Calculus/Polar_Integration&oldid=4482125"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp