Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikibooksThe Free Textbook Project
Search

Calculus/Change of variables

From Wikibooks, open books for an open world
<Calculus
← Multiple integrationCalculusVector calculus →
Change of variables

The Jacobian matrix and the change of variables are proven to be extremely useful in multivariable calculus when we want to change our variables. They are extremely useful because if we want to integrate a function such as

Rex+yxydA{\displaystyle \iint _{R}e^{\frac {x+y}{x-y}}\,dA}, whereR{\displaystyle R} is the trapezoidal region with vertices(1,0),(2,0),(0,2),(0,1){\displaystyle (1,0),(2,0),(0,-2),(0,-1)},

it would be helpful if we can substitutex+y{\displaystyle x+y} asu{\displaystyle u} andxy{\displaystyle x-y} asv{\displaystyle v} becauseeuv{\displaystyle e^{\frac {u}{v}}} is easier to be integrated. However, we need to be familiar with integration, transformation, and the Jacobian, which the latter two will be discussed in this chapter.

Transformation

[edit |edit source]

Let us start with an introduction to the process of variable transformation. Assume that we have a functionf(x,y){\displaystyle f(x,y)}. We want to calculate the expression:

Rf(x,y)dA{\displaystyle \iint _{R}f(x,y)\,dA}

in whichR{\displaystyle R} is a region inxy{\displaystyle xy}-plane. (Another notation fordA{\displaystyle dA} isdxdy{\displaystyle dxdy}. (dA{\displaystyle dA} here is not differential.) )

However, the area ofR{\displaystyle R} is too complicated to be written out in terms ofx,y{\displaystyle x,y}. So, we want to change the variables so that the area ofR{\displaystyle R} can be more easily expressed. Furthermore, the function itself is too hard to be integrated.

It would be much easier if the variables can be changed to more convenient ones, Assume there are two more variablesu,v{\displaystyle u,v} that have connections with variablesx,y{\displaystyle x,y} that satisfy:

x=x(u,v)andy=y(u,v).{\displaystyle x=x(u,v)\quad {\text{and}}\quad y=y(u,v).}

The original integral can be rewritten into:

Sf(x(u,v),y(u,v))|(x,y)(u,v)|dudv{\displaystyle \iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\,du\,dv}

in whichS{\displaystyle S} is another region inuv{\displaystyle uv}-plane transformed from the regionR{\displaystyle R} inxy{\displaystyle xy}-plane.The purpose of this section is to have us understand the process of this transformation, excluding the|(x,y)(u,v)|{\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} part. We will discuss the purpose and meaning of|(x,y)(u,v)|{\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} inthe next section.

Introduction

[edit |edit source]

In fact, we have already encountered two examples of variable transformation inR3{\displaystyle \mathbb {R} ^{3}}.

The first example is using polar coordinates in integration while the second one is using spherical coordinates in integration. Using polar coordinates in integration is a change in variable because we effectively change the variablesx,y,z{\displaystyle x,y,z} intor,θ,z{\displaystyle r,\theta ,z} with relations:

x=rcosθy=rsinθz=z{\displaystyle x=r\cos \theta \quad y=r\sin \theta \quad z=z}

As a result, the function being integratedf(x,y){\displaystyle f(x,y)} is transformed intof(x(r,θ,z),y(r,θ,z),z(r,θ,z)){\displaystyle f(x(r,\theta ,z),y(r,\theta ,z),z(r,\theta ,z))}, thus giving us:

Rf(x,y,z)dV=Sf(rcosθ,rsinθ,z)dz r dr dθ{\displaystyle \iiint _{R}f(x,y,z)dV=\iiint _{S}f(r\cos \theta ,r\sin \theta ,z)dz\ r\ dr\ d\theta }, which is the formula for polar coordinates integration. (It will be proved later)

The second example, integration in spherical coordinates, offers a similar explanation. The original variablesx,y,z{\displaystyle x,y,z} and the transformed variablesρ,θ,ϕ{\displaystyle \rho ,\theta ,\phi } have the relations:

{x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕ{\displaystyle {\begin{cases}x=\rho \sin \phi \cos \theta \\y=\rho \sin \phi \sin \theta \\z=\rho \cos \phi \end{cases}}}

These relations can give us that

Rf(x,y,z)dV=Sf(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕ dρ dθ dϕ{\displaystyle \iiint _{R}f(x,y,z)dV=\iiint _{S}f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )\rho ^{2}\sin \phi \ d\rho \ d\theta \ d\phi }, which is the formula for spherical coordinates integration. (It will be proved later)

Generalization

[edit |edit source]

We understand the transformation from Cartesian coordinates to both polar and spherical coordinates. However, those two are specific examples of variable transformation. We should expand our scope into all kinds of transformation. Instead of specific changes, such asx=rcosθ,y=rsinθ and z=z{\displaystyle x=r\cos \theta ,y=r\sin \theta {\text{ and }}z=z}, we will talk about general changes. Let's start from two variables.

We consider a change of variables that is given by a transformationT{\displaystyle T} from theuv{\displaystyle uv}-plane to thexy{\displaystyle xy}-plane. In other words,

T(u,v)=(x,y){\displaystyle T(u,v)=(x,y)}, where(x,y){\displaystyle (x,y)} is the original or old variables and(u,v){\displaystyle (u,v)} is the new ones.

In this transformation,x,y{\displaystyle x,y} are related tou,v{\displaystyle u,v} by the equations

x=g(u,v)y=h(u,v){\displaystyle x=g(u,v)\quad y=h(u,v)}

We usually just assume thatT{\displaystyle T} is aC1{\displaystyle C^{1}} transformation, which means thatg,h{\displaystyle g,h} have continuous 1st-order partial derivatives. Now, time for some terminologies.

T(S)=R{\displaystyle T(S)=R}

T1(R)=S{\displaystyle T^{-1}(R)=S}

Regions

[edit |edit source]

Recall that we have established the transformationT(S)=R{\displaystyle T(S)=R}, whereS{\displaystyle S} is the region in theuv{\displaystyle uv}-plane whileR{\displaystyle R} is the region in thexy{\displaystyle xy}-plane. If we are given the regionS{\displaystyle S} and transformationT{\displaystyle T}, we are expected to calculate the regionR{\displaystyle R}. For example, a transformation is defined by the equations

x=u2v2y=2uv{\displaystyle x=u^{2}-v^{2}\quad y=2uv}

Find the image ofS{\displaystyle S}, which is defined asS={(u,v):0u1, 0v1}{\displaystyle S=\{(u,v):0\leq u\leq 1,\ 0\leq v\leq 1\}}.

In this case, we need to know the boundaries of the regionS{\displaystyle S}, which is confined by the lines:

u=0u=1v=0v=1{\displaystyle u=0\quad u=1\quad v=0\quad v=1}

If we can redefine the boundaries usingx,y{\displaystyle x,y} instead ofu,v{\displaystyle u,v}, we effectively will find the image ofS{\displaystyle S}.

When u=0(0v1){x=v2y=0(substitution)Thus, y=0(1x0){\displaystyle {\begin{aligned}{\text{When }}\quad &u=0\quad (0\leq v\leq 1)\\&{\begin{cases}x=-v^{2}\\y=0\\\end{cases}}\quad {\text{(substitution)}}\\{\text{Thus, }}\quad &y=0\quad (-1\leq x\leq 0)\\\end{aligned}}}When u=1(0v1){x=1v2y=2vThus, x=1y24(0x1){\displaystyle {\begin{aligned}{\text{When }}\quad &u=1\quad (0\leq v\leq 1)\\&{\begin{cases}x=1-v^{2}\\y=2v\\\end{cases}}\\{\text{Thus, }}\quad &x=1-{\frac {y^{2}}{4}}\quad (0\leq x\leq 1)\\\end{aligned}}}When v=0(001){x=u2y=0Thus, y=0(0x1){\displaystyle {\begin{aligned}{\text{When }}\quad &v=0\quad (0\leq 0\leq 1)\\&{\begin{cases}x=u^{2}\\y=0\\\end{cases}}\\{\text{Thus, }}\quad &y=0\quad (0\leq x\leq 1)\\\end{aligned}}}When v=1(0u1){x=u21y=2uThus, x=y241(1x0){\displaystyle {\begin{aligned}{\text{When }}\quad &v=1\quad (0\leq u\leq 1)\\&{\begin{cases}x=u^{2}-1\\y=2u\\\end{cases}}\\{\text{Thus, }}\quad &x={\frac {y^{2}}{4}}-1\quad (-1\leq x\leq 0)\\\end{aligned}}}

As a result, the image ofS{\displaystyle S} isR={(x,y):0y2, y241x1y24}{\displaystyle R=\{(x,y):0\leq y\leq 2,\ {\frac {y^{2}}{4}}-1\leq x\leq 1-{\frac {y^{2}}{4}}\}}

We can use the same method to calculateS{\displaystyle S} fromR{\displaystyle R}.

The Jacobian

[edit |edit source]

The Jacobian matrix is one of the most important concept in this chapter. It "compromises" the change in area when we change the variables so that after changing the variables, the result of the integral does not change. Recall that at the very beginning of the last section, we reserved the explanation of|(x,y)(u,v)|{\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} fromSf(x(u,v),y(u,v))|(x,y)(u,v)| du dv{\displaystyle \iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\ du\ dv} here. To actually start explaining that, we should review some basic concepts.

Review "u-substitution"

[edit |edit source]

Recall that when we are discussingu{\displaystyle u}-substitution (a simple way to describe "integration by substitution for single-variable functions"), we use the following method to solve integrals.

abf(x) dx=cdf(x(u)) dxdu duwhere c=x(a),d=x(b){\displaystyle \int _{a}^{b}f(x)\ dx=\int _{c}^{d}f(x(u))\ {\frac {dx}{du}}\ du\quad {\text{where }}c=x(a),d=x(b)}

For example,

sin(ln(x))x dx{\displaystyle \int {\frac {\sin(\ln(x))}{x}}\ dx}

Let u=ln(x)Thus, dudx=1x du=1xdx{\displaystyle {\begin{aligned}{\text{Let }}\quad &u=\ln(x)\\{\text{Thus, }}\quad &{\frac {du}{dx}}={\frac {1}{x}}\\\Rightarrow \ &du={\frac {1}{x}}dx\\\end{aligned}}}

sin(ln(x))x dx=sin(ln(x)) (1x dx)rearrangement=sin(u) dulet u=ln(x)du=1x dx=cos(u)+Cintegration=cos(ln(x))+Cresubstitution{\displaystyle {\begin{aligned}\int {\frac {\sin(\ln(x))}{x}}\ dx&=\int \sin(\ln(x))\ {\Big (}{\frac {1}{x}}\ dx{\Big )}&\quad {\text{rearrangement}}\\&=\int \sin(u)\ du&\quad {\text{let }}u=\ln(x)\implies du={\frac {1}{x}}\ dx\\&=-\cos(u)+C&\quad {\text{integration}}\\&=-\cos(\ln(x))+C&\quad {\text{resubstitution}}\\\end{aligned}}}

If we add endpoints into the integral, the result will be:

ee2sin(ln(x))x dx=ee2sin(ln(x)) (1x dx)rearrangement=12sin(u) duremember u=ln(x) and du=1x dx=[cos(u)]12integration=cos(1)cos(2){\displaystyle {\begin{aligned}\int _{e}^{e^{2}}{\frac {\sin(\ln(x))}{x}}\ dx&=\int _{e}^{e^{2}}\sin(\ln(x))\ {\Big (}{\frac {1}{x}}\ dx{\Big )}&\quad {\text{rearrangement}}\\&=\int _{1}^{2}\sin(u)\ du&\quad {\text{remember }}u=\ln(x){\text{ and }}du={\frac {1}{x}}\ dx\\&={\Big [}-\cos(u){\Big ]}_{1}^{2}&\quad {\text{integration}}\\&=\cos(1)-\cos(2)\\\end{aligned}}}

If we look carefully at the "rearrangement" and "remember" part in the solution, we find that we effectively changed our variable fromx{\displaystyle x} tou{\displaystyle u} through this method:

abf(x)dx=x=ax=bf(x(u)) d(x(u))=u=x(a)u=x(b)f(x(u)) dxdu du{\displaystyle \int _{a}^{b}f(x)dx=\int _{x=a}^{x=b}f(x(u))\ d(x(u))=\int _{u=x(a)}^{u=x(b)}f(x(u))\ {\frac {dx}{du}}\ du}, which is what we have mentioned above.

The appearance of the termdxdu{\displaystyle {\frac {dx}{du}}} not only is a mathematical product of deduction, but also serves a intuitive purpose. When we change our function fromf(x){\displaystyle f(x)} tof(x(u)){\displaystyle f(x(u))}, we alsochange the region we are integrating, which can be seen by looking at the endpoints. This change of region is either"stretched" or"condensed" by a factor ofdudx{\displaystyle {\frac {du}{dx}}}.To counter this change,dxdu{\displaystyle {\frac {dx}{du}}} is deduced to compromise (recall thatdxdu(dudx)=1{\displaystyle {\frac {dx}{du}}\left({\frac {du}{dx}}\right)=1}). We can simply think this term as a compromise factor that counters the change of region due to a change of variables.


Now, let us put our focus back to two variables. If we change our variables fromx,y{\displaystyle x,y} tou,v{\displaystyle u,v}, we alsochange the region we are integrating, as demonstrated in the previous section.

So, continuing our flow of thought, there should also be a term deduced to counter the change of region. In other words:

Rf(x,y)dA1=Sf(x(u,v),y(u,v))dA1dA2informal termdA2{\displaystyle \iint _{R}f(x,y)\,dA_{1}=\iint _{S}f(x(u,v),y(u,v))\underbrace {\frac {dA_{1}}{dA_{2}}} _{\text{informal term}}\,dA_{2}}


Note that the symbols used here are forintuitive purpose and not for official use. Official terms will be introduced later in the chapter, but for now, we use these terms for better understanding.

In this case, when we change the function fromf(x,y){\displaystyle f(x,y)} tof(x(u),y(u)){\displaystyle f(x(u),y(u))}, we"stretched" or"condensed" the area of our region, by a factor ofdA2dA1{\displaystyle {\frac {dA_{2}}{dA_{1}}}}; therefore, we need to counter the change with a factor ofdA1dA2{\displaystyle {\frac {dA_{1}}{dA_{2}}}}. The Jacobian matrix for two variables is basically an expression for calculatingdA1dA2{\displaystyle {\frac {dA_{1}}{dA_{2}}}} in terms ofu,v{\displaystyle u,v}, so that we are able to integrate the new integral after transformation, since the function involved in the new integral can only in terms ofu,v{\displaystyle u,v}, but notx,y{\displaystyle x,y}(we need to expressx{\displaystyle x} andy{\displaystyle y} in terms ofu,v{\displaystyle u,v}).

The Jacobian

[edit |edit source]

Double integrals

[edit |edit source]

Now, it is time for us to deduce the Jacobian matrix. In the review above, we already establishedinformally that the Jacobian matrix for two variables is basicallydA1dA2{\displaystyle {\frac {dA_{1}}{dA_{2}}}}, withdA1{\displaystyle dA_{1}} being the infinitesimally small area in the regionR{\displaystyle R} in thexy{\displaystyle xy}-plane anddA2{\displaystyle dA_{2}} being the infinitesimally small area in the regionS{\displaystyle S} in theuv{\displaystyle uv}-plane. Since we are changing our variables fromx,y{\displaystyle x,y} tou,v{\displaystyle u,v}, we should describedA1{\displaystyle dA_{1}} anddA2{\displaystyle dA_{2}} in terms ofu,v{\displaystyle u,v} over a region inuv{\displaystyle uv}-plane.


Let us start withdA2{\displaystyle dA_{2}} first because it is easier to calculate. We start with a small rectangleS0{\displaystyle S_{0}}, which is a part ofS{\displaystyle S}, in theuv{\displaystyle uv}-plane whose lower left corner is the point(u0,v0){\displaystyle (u_{0},v_{0})} and whose dimensions areΔu,Δv{\displaystyle \Delta u,\Delta v}. Thus, the area ofS0{\displaystyle S_{0}} is

ΔA2=ΔuΔv{\displaystyle \Delta A_{2}=\Delta u\Delta v}

The image ofS0{\displaystyle S_{0}}, in this case let's name itR0{\displaystyle R_{0}}, is in thexy{\displaystyle xy}-plane according to the transformationT(S0)=R0{\displaystyle T(S_{0})=R_{0}}. One of its boundary points is(x0,y0)=T(u0,v0){\displaystyle (x_{0},y_{0})=T(u_{0},v_{0})}. We can use a vectorr{\displaystyle \mathbf {r} } to describe the position vector ofR0{\displaystyle R_{0}} of the point(u,v){\displaystyle (u,v)}. In other words,r{\displaystyle \mathbf {r} } can describe the regionR0{\displaystyle R_{0}} given that

r(u,v)=x(u,v)i+y(u,v)jwhere u0uu0+Δu, v0vv0+Δv{\displaystyle \mathbf {r} (u,v)=x(u,v)\mathbf {i} +y(u,v)\mathbf {j} \quad {\text{where }}u_{0}\leq u\leq u_{0}+\Delta u,\ v_{0}\leq v\leq v_{0}+\Delta v}

The regionR0{\displaystyle R_{0}} now can be described in terms ofu,v{\displaystyle u,v}. The next step is to utilize the position vectorr(u,v){\displaystyle \mathbf {r} (u,v)} to calculate its areadA1{\displaystyle dA_{1}}.


The shape of the regionR0{\displaystyle R_{0}} after transformationR0=T(S0){\displaystyle R_{0}=T(S_{0})} can be approximated, which is a parallelogram. As we learnt in algebra, the area of a parallelogram is defined to be the product of its base and height. However, this definition cannot help us with our calculations. Instead, we will use the cross product to determine its area. Recall that the area of a parallelogram formed by vectorsa{\displaystyle \mathbf {a} } andb{\displaystyle \mathbf {b} } can be calculated by taking the magnitude of the cross product of the two vectors.

ΔA1=|a×b|{\displaystyle \Delta A_{1}=|\mathbf {a} \times \mathbf {b} |}

In this parallelogram, the two vectorsa{\displaystyle \mathbf {a} } andb{\displaystyle \mathbf {b} } are, in terms ofu,v{\displaystyle u,v}:

a=r(u0+Δu,v0)r(u0,v0) and b=r(u0,v0+Δv)r(u0,v0){\displaystyle \mathbf {a} =\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})\quad {\text{ and }}\quad \mathbf {b} =\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})}

It seems very similar to the definition of partial derivatives:


ru=limΔu0r(u0+Δu,v0)r(u0,v0)Δu and rv=limΔv0r(u0,v0+Δv)r(u0,v0)Δv{\displaystyle \mathbf {r} _{u}=\lim _{\Delta u\rightarrow 0}{\frac {\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})}{\Delta u}}\quad {\text{ and }}\quad \mathbf {r} _{v}=\lim _{\Delta v\rightarrow 0}{\frac {\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})}{\Delta v}}}

As a result, we can approximate that:


a=r(u0+Δu,v0)r(u0,v0)Δuru and b=r(u0,v0+Δv)r(u0,v0)Δvrv{\displaystyle {\begin{aligned}&\mathbf {a} =\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})\approx \Delta u\mathbf {r} _{u}\quad {\text{ and }}\quad \\&\mathbf {b} =\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})\approx \Delta v\mathbf {r} _{v}\\\end{aligned}}}

Now, we calculateru,rv{\displaystyle \mathbf {r} _{u},\mathbf {r} _{v}}, given thatr(u,v)=x(u,v)i+y(u,v)j{\displaystyle \mathbf {r} (u,v)=x(u,v)\mathbf {i} +y(u,v)\mathbf {j} }:


ru=xu(u,v) i+yu(u,v) j=xu i+yu j and rv=xv(u,v) i+yv(u,v) j=xv i+yv j{\displaystyle {\begin{aligned}&\mathbf {r} _{u}=x_{u}(u,v)\ \mathbf {i} +y_{u}(u,v)\ \mathbf {j} ={\frac {\partial x}{\partial u}}\ \mathbf {i} +{\frac {\partial y}{\partial u}}\ \mathbf {j} \quad {\text{ and }}\\&\mathbf {r} _{v}=x_{v}(u,v)\ \mathbf {i} +y_{v}(u,v)\ \mathbf {j} ={\frac {\partial x}{\partial v}}\ \mathbf {i} +{\frac {\partial y}{\partial v}}\ \mathbf {j} \\\end{aligned}}}

We can calculateΔA1=||a×b||{\displaystyle \Delta A_{1}=||\mathbf {a} \times \mathbf {b} ||} (we take absolute value to prevent negative area). You can review the cross product in Chapter7.1. Note that the inner bar of || is for calculating the magnitude (or norm) while the outer bar of || is for taking the absolute value.

ΔA1=||a×b||=||(Δu ru)×(Δv rv)||approximation=||ru×rv||ΔuΔv=||det(ijkxuyu0xvyv0)||ΔuΔvcross product=||det(xuxvyuyv)k||ΔuΔvevaluation=|det(xuxvyuyv)|k|1|ΔuΔv{\displaystyle {\begin{aligned}\Delta A_{1}&=||\mathbf {a} \times \mathbf {b} ||\\&=||(\Delta u\ \mathbf {r} _{u})\times (\Delta v\ \mathbf {r} _{v})||&\quad {\text{approximation}}\\&=||\mathbf {r} _{u}\times \mathbf {r} _{v}||\Delta u\Delta v\\&={\begin{vmatrix}{\begin{vmatrix}\det {\begin{pmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&0\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&0\\\end{pmatrix}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v&\quad {\text{cross product}}\\&={\begin{vmatrix}{\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\mathbf {k} \end{vmatrix}}\end{vmatrix}}\Delta u\Delta v&\quad {\text{evaluation}}\\&={\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\underbrace {|\mathbf {k} |} _{1}\end{vmatrix}}\Delta u\Delta v\\\end{aligned}}}

Then, we can substitute our newly deduced terms.

ΔA1ΔA2=|det(xuxvyuyv)|ΔuΔvΔuΔv=|det(xuxvyuyv)|=|xuyvxvyu|{\displaystyle {\frac {\Delta A_{1}}{\Delta A_{2}}}={\frac {{\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v}{\Delta u\Delta v}}={\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\end{vmatrix}}=\left|{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}\right|}

Finally, we derived theabsolute value of Jacobian. The definition of Jacobian is as follows:

Definition. (The Jacobian for two variables) The Jacobian of the transformationT{\displaystyle T} given byx=g(u,v){\displaystyle x=g(u,v)} andy=h(u,v){\displaystyle y=h(u,v)} whose partial derivatives exist and are continuous, is(x,y)(u,v)=|xuxvyuyv|=xuyvxvyu{\displaystyle {\frac {\partial (x,y)}{\partial (u,v)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{vmatrix}}={\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}}

We will then use the Jacobian in the change of variables in integrals. The absolute value is added to prevent a negative area.

Rf(x,y)dAi=1mj=1nf(xi,yj)ΔAi=1mj=1nf(x(ui,vj),y(ui,vj))ΔA2Since ΔA2|(x,y)(u,v)|ΔuΔvi=1mj=1nf(x(ui,vj),y(ui,vj))ΔA2i=1mj=1nf(x(ui,vj),y(ui,vj)) |(x,y)(u,v)|ΔuΔvSf(x(u,v),y(u,v)) |(x,y)(u,v)| du dv{\displaystyle {\begin{aligned}\iint _{R}f(x,y)\,dA&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x_{i},y_{j})\Delta A\\&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\Delta A_{2}\\{\text{Since }}&\Delta A_{2}\approx \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\Delta u\Delta v\\\sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\Delta A_{2}&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\ \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\Delta u\Delta v\\&\approx \iint _{S}f(x(u,v),y(u,v))\ \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\ du\ dv\\\end{aligned}}}

Here is the theorem for the change of variables in a double integral and we haveexplained intuitively why and how it works, but the above explanations arenotproof of this theorem. In particular, we make some approximation, while the statement in the following theorem isequality, and not approximation. The actualproof is quite complicated and advanced, and thus not included here.

Theorem. (Change of variables for double integration) SupposeT{\displaystyle T} is aC1{\displaystyle C^{1}} transformation whose Jacobian is nonzero and that maps a regionS{\displaystyle S} in theuv{\displaystyle uv}-plane onto a regionR{\displaystyle R} in thexy{\displaystyle xy}-plane injectively, via the change of variablesx=x(u,v){\displaystyle x=x(u,v)} andy=y(u,v){\displaystyle y=y(u,v)}.Suppose thatf{\displaystyle f} is continuous onR{\displaystyle R}, we haveRf(x,y)dxdy=Sf(x(u,v),y(u,v))|(x,y)(u,v)|dudv{\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\,du\,dv}

Remark.

If we change some notations, we can getSf(u(x,y),v(x,y))|(u,v)(x,y)|dxdy=Rf(u,v)dudv,{\displaystyle \iint _{S}f(u(x,y),v(x,y))\left|{\frac {\partial (u,v)}{\partial (x,y)}}\right|\,dx\,dy=\iint _{R}f(u,v)\,du\,dv,}(T{\displaystyle T} maps a regionS{\displaystyle S} inxy{\displaystyle xy}-plane onto a regionR{\displaystyle R} inuv{\displaystyle uv}-plane in this case.)which may be a more convenient form to be used sometimes.

Example.

3

Choose correct statement(s) from the following statements.

If bothu{\displaystyle u} andv{\displaystyle v} are independent from bothx{\displaystyle x} andy{\displaystyle y}, the Jacobian(u,v)(x,y)=0{\displaystyle {\frac {\partial (u,v)}{\partial (x,y)}}=0}.
If bothu{\displaystyle u} andv{\displaystyle v} are independent from bothx{\displaystyle x} andy{\displaystyle y}, the Jacobian(x,y)(u,v)=0{\displaystyle {\frac {\partial (x,y)}{\partial (u,v)}}=0}.
Ifu{\displaystyle u} is independent from bothx{\displaystyle x} andy{\displaystyle y}, whilev{\displaystyle v} is dependent from bothx{\displaystyle x} andy{\displaystyle y}, the Jacobian(u,v)(x,y)=0.{\displaystyle {\frac {\partial (u,v)}{\partial (x,y)}}=0.}
Ifu{\displaystyle u} is independent from bothx{\displaystyle x} andy{\displaystyle y}, whilev{\displaystyle v} is dependent from bothx{\displaystyle x} andy{\displaystyle y}, the Jacobian(x,y)(u,v)=0.{\displaystyle {\frac {\partial (x,y)}{\partial (u,v)}}=0.}
Ifv=ku{\displaystyle v=ku} in whichk{\displaystyle k} is a real number, then the Jacobian(u,v)(x,y)=k.{\displaystyle {\frac {\partial (u,v)}{\partial (x,y)}}=k.}

Example.

Consider a regionD{\displaystyle D} that is bounded by the linesy=2x{\displaystyle y=2-x},y=3x{\displaystyle y=3-x},y=4x{\displaystyle y=4x} andy=5x{\displaystyle y=5x}. Prove thatDy(x+y)xdxdy=193(ln(65)+130).{\displaystyle \iint _{D}{\frac {y(x+y)}{x}}dxdy={\frac {19}{3}}\left(\ln \left({\frac {6}{5}}\right)+{\frac {1}{30}}\right).}

Proof.

Letu=x+y{\displaystyle u=x+y} andv=yx{\displaystyle v={\frac {y}{x}}}, andD{\displaystyle D'} be the transformed region via these changes of variables. Solving these two equations,{u=x+yv=yx{y=uxv=yxv=uxxx=uv+1y=uuv+1=uvv+1.{\displaystyle {\begin{cases}u=x+y\\v={\frac {y}{x}}\end{cases}}\implies {\begin{cases}y=u-x\\v={\frac {y}{x}}\end{cases}}\implies v={\frac {u-x}{x}}\implies x={\frac {u}{v+1}}\implies y=u-{\frac {u}{v+1}}={\frac {uv}{v+1}}.}Therefore, the Jacobian for this transformation is(x,y)(u,v)=|xuxvyuyv|=|1v+1u(v+1)2vv+1(v+1)uuv(v+1)2|=1v+1u(v+1)2u(v+1)2vv+1=u+uv(v+1)3=u(v+1)2.{\displaystyle {\frac {\partial (x,y)}{\partial (u,v)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\end{vmatrix}}={\begin{vmatrix}{\frac {1}{v+1}}&{\frac {-u}{(v+1)^{2}}}\\{\frac {v}{v+1}}&{\frac {(v+1)u-uv}{(v+1)^{2}}}\end{vmatrix}}={\frac {1}{v+1}}\cdot {\frac {u}{(v+1)^{2}}}-{\frac {-u}{(v+1)^{2}}}\cdot {\frac {v}{v+1}}={\frac {u+uv}{(v+1)^{3}}}={\frac {u}{(v+1)^{2}}}.}Also, the bounds forx+y{\displaystyle x+y} andyx{\displaystyle {\frac {y}{x}}} inD{\displaystyle D} are2x+y3{\displaystyle 2\leq x+y\leq 3} and4yx5{\displaystyle 4\leq {\frac {y}{x}}\leq 5}. So, the bounds foru{\displaystyle u} andv{\displaystyle v} inD{\displaystyle D'} are2u3{\displaystyle 2\leq u\leq 3} and4v5{\displaystyle 4\leq v\leq 5}. Thus, the desired integral isDy(x+y)xdx=4523(uvu(v+1)2>0 because of the bounds)dudv=45v(v+1)2(333233)dv=1934+15+1w1w2dwlet w=v+1dw=dv=193[ln|w|1w]56=193(ln6ln5+130)=193(ln(65)+130)by properties of logarithm{\displaystyle {\begin{aligned}\iint _{D}{\frac {y(x+y)}{x}}dx&=\int _{4}^{5}\int _{2}^{3}\left(uv\cdot \underbrace {\frac {u}{(v+1)^{2}}} _{>0{\text{ because of the bounds}}}\right)\,du\,dv\\&=\int _{4}^{5}{\frac {v}{(v+1)^{2}}}\left({\frac {3^{3}}{3}}-{\frac {2^{3}}{3}}\right)\,dv\\&={\frac {19}{3}}\int _{4+1}^{5+1}{\frac {w-1}{w^{2}}}\,dw\qquad {\text{let }}w=v+1\implies dw=dv\\&={\frac {19}{3}}\left[\ln |w|-{\frac {1}{w}}\right]_{5}^{6}\\&={\frac {19}{3}}\left(\ln 6-\ln 5+{\frac {1}{30}}\right)\\&={\frac {19}{3}}\left(\ln \left({\frac {6}{5}}\right)+{\frac {1}{30}}\right)\qquad {\text{by properties of logarithm}}\end{aligned}}}

Triple integrals

[edit |edit source]

If we continue our flow of thoughts, we can also find the Jacobian for three variables. Suppose there is a functionf(x,y,z){\displaystyle f(x,y,z)}.x,y,z{\displaystyle x,y,z} has relations withu,v,w{\displaystyle u,v,w}, which are

x=x(u,v,w),y=y(u,v,w),andz=z(u,v,w){\displaystyle x=x(u,v,w),\quad y=y(u,v,w),\quad {\text{and}}\quad z=z(u,v,w)}

R{\displaystyle R} is a region in thexyz{\displaystyle xyz}-space, andS{\displaystyle S} is a region in theuvw{\displaystyle uvw}-space, with transformationT(S)=R{\displaystyle T(S)=R}.


To calculate the Jacobian for three variables, we go through a similar process. The process of transformation will be: a rectangular prism with dimensionsΔu,Δv,Δw{\displaystyle \Delta u,\Delta v,\Delta w} in theuvw{\displaystyle uvw}-space to a parallelepiped in thexyz{\displaystyle xyz}-space and a volume ofΔV2=ΔuΔvΔw{\displaystyle \Delta V_{2}=\Delta u\Delta v\Delta w}. The parallelepiped can be described with the position vector:

r(u,v,w)=x(u,v,w) i+y(u,v,w) j+z(u,v,w) k{\displaystyle \mathbf {r} (u,v,w)=x(u,v,w)\ \mathbf {i} +y(u,v,w)\ \mathbf {j} +z(u,v,w)\ \mathbf {k} }

The three sides of the parallelepiped can be described by the position vector as:

a=r(u+Δu,v,w)r(u,v,w),b=r(u,v+Δv,w)r(u,v,w),andc=r(u,v,w+Δw)r(u,v,w).{\displaystyle {\begin{aligned}&\mathbf {a} =\mathbf {r} (u+\Delta u,v,w)-\mathbf {r} (u,v,w),\\&\mathbf {b} =\mathbf {r} (u,v+\Delta v,w)-\mathbf {r} (u,v,w),\quad {\text{and}}\\&\mathbf {c} =\mathbf {r} (u,v,w+\Delta w)-\mathbf {r} (u,v,w).\\\end{aligned}}}

Since the derivatives ofr{\displaystyle \mathbf {r} } are defined as:

ru=limΔu0r(u+Δu,v,w)r(u,v,w)Δu,rv=limΔv0r(u,v+Δv,w)r(u,v,w)Δv,andrw=limΔw0r(u,v,w+Δw)r(u,v,w)Δw.{\displaystyle {\begin{aligned}&\mathbf {r} _{u}=\lim _{\Delta u\rightarrow 0}{\frac {\mathbf {r} (u+\Delta u,v,w)-\mathbf {r} (u,v,w)}{\Delta u}},\\&\mathbf {r} _{v}=\lim _{\Delta v\rightarrow 0}{\frac {\mathbf {r} (u,v+\Delta v,w)-\mathbf {r} (u,v,w)}{\Delta v}},\quad {\text{and}}\\&\mathbf {r} _{w}=\lim _{\Delta w\rightarrow 0}{\frac {\mathbf {r} (u,v,w+\Delta w)-\mathbf {r} (u,v,w)}{\Delta w}}.\\\end{aligned}}}

The three vectorsa,b,c{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } can be similarly approximated into:

aΔu ru,bΔv rv,andcΔw rw{\displaystyle \mathbf {a} \approx \Delta u\ \mathbf {r} _{u},\quad \mathbf {b} \approx \Delta v\ \mathbf {r} _{v},\quad {\text{and}}\quad \mathbf {c} \approx \Delta w\ \mathbf {r} _{w}}

Since the position vectorr{\displaystyle \mathbf {r} } isr(u,v,w)=x(u,v,w) i+y(u,v,w) j+z(u,v,w) k{\displaystyle \mathbf {r} (u,v,w)=x(u,v,w)\ \mathbf {i} +y(u,v,w)\ \mathbf {j} +z(u,v,w)\ \mathbf {k} }, the partial derivatives forr{\displaystyle \mathbf {r} } are:

ru=xu i+yu j+zu k,rv=xv i+yv j+zv k,andrv=xw i+yw j+zw k{\displaystyle {\begin{aligned}&\mathbf {r} _{u}={\frac {\partial x}{\partial u}}\ \mathbf {i} +{\frac {\partial y}{\partial u}}\ \mathbf {j} +{\frac {\partial z}{\partial u}}\ \mathbf {k} ,\\&\mathbf {r} _{v}={\frac {\partial x}{\partial v}}\ \mathbf {i} +{\frac {\partial y}{\partial v}}\ \mathbf {j} +{\frac {\partial z}{\partial v}}\ \mathbf {k} ,\quad {\text{and}}\\&\mathbf {r} _{v}={\frac {\partial x}{\partial w}}\ \mathbf {i} +{\frac {\partial y}{\partial w}}\ \mathbf {j} +{\frac {\partial z}{\partial w}}\ \mathbf {k} \\\end{aligned}}}

Recall that the volume of a parallelepiped determined by the vectorsa,b,c{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } is the magnitude of their scalar triple product:

V=|(a×b)  c|{\displaystyle V=|(\mathbf {a} \times \mathbf {b} )\ \cdot \ \mathbf {c} |}

We just need to substitute the vectors with what we have yielded.

ΔV1=|(a×b)  c|=|(Δu ru)×(Δv rv)  Δw rw|=|ru×rv  rw|ΔuΔvΔw=||ijkxuyuzuxvyvzv|  (xwywzw)|ΔuΔvΔwcross product=|(yuzvzuyvzuxvxuzvxuyvyuxv)  (xwywzw)|ΔuΔvΔw=|xwyuzvxwyvzu+xvywzuxuywzv+xuyvzwxvyuzw|ΔuΔvΔwdot product=|xu(yvzwywzv)+xv(ywzuyuzw)+xw(yuzvyvzu)|ΔuΔvΔwrearrangement=||xuxvxwyuyvywzuzvzw||ΔuΔvΔwcross product{\displaystyle {\begin{aligned}\Delta V_{1}=|(\mathbf {a} \times \mathbf {b} )\ \cdot \ \mathbf {c} |&=|(\Delta u\ \mathbf {r} _{u})\times (\Delta v\ \mathbf {r} _{v})\ \cdot \ \Delta w\ \mathbf {r} _{w}|\\&=|\mathbf {r} _{u}\times \mathbf {r} _{v}\ \cdot \ \mathbf {r} _{w}|\Delta u\Delta v\Delta w\\&={\begin{vmatrix}{\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\\\end{vmatrix}}\ \cdot \ {\begin{pmatrix}{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial w}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w&\quad {\text{cross product}}\\&={\begin{vmatrix}{\begin{pmatrix}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial z}{\partial u}}{\frac {\partial y}{\partial v}}\\{\frac {\partial z}{\partial u}}{\frac {\partial x}{\partial v}}-{\frac {\partial x}{\partial u}}{\frac {\partial z}{\partial v}}\\{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial y}{\partial u}}{\frac {\partial x}{\partial v}}\\\end{pmatrix}}\ \cdot \ {\begin{pmatrix}{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial w}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w\\&=\left|{\frac {\partial x}{\partial w}}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial x}{\partial w}}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial u}}+{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial u}}-{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial v}}+{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial w}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial w}}\right|\Delta u\Delta v\Delta w&\quad {\text{dot product}}\\&=\left|{\frac {\partial x}{\partial u}}{\bigg (}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial w}}-{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial v}}{\bigg )}+{\frac {\partial x}{\partial v}}{\bigg (}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial u}}-{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial w}}{\bigg )}+{\frac {\partial x}{\partial w}}{\bigg (}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial u}}{\bigg )}\right|\Delta u\Delta v\Delta w&\quad {\text{rearrangement}}\\&={\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w&\quad {\text{cross product}}\\\end{aligned}}}

Thus,ΔV1ΔV2=||xuxvxwyuyvywzuzvzw||ΔuΔvΔwΔuΔvΔw=||xuxvxwyuyvywzuzvzw||{\displaystyle {\frac {\Delta V_{1}}{\Delta V_{2}}}={\frac {{\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w}{\Delta u\Delta v\Delta w}}={\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}}.

Definition. (The Jacobian for three variables) The Jacobian of the transformationT{\displaystyle T} given by functionsx=x(u,v,w),y=y(u,v,w){\displaystyle x=x(u,v,w),y=y(u,v,w)} andz=z(u,v,w){\displaystyle z=z(u,v,w)} whose partial derivatives exist and are continuous, is(x,y,z)(u,v,w)=|xuxvxwyuyvywzuzvzw|{\displaystyle {\frac {\partial (x,y,z)}{\partial (u,v,w)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}}

The absolute value is added to prevent a negative volume.

Rf(x,y,z)dVi=1mj=1nk=1pf(xi,yj,zk)ΔVi=1mj=1nk=1pf(x(ui,vj,wk),y(ui,vj,wk),z(ui,vj,wk))ΔV2Since ΔV2|(x,y,z)(u,v,w)|ΔuΔvΔwi=1mj=1nk=1pf(x(ui,vj,wk),y(ui,vj,wk),z(ui,vj,wk))ΔV2i=1mj=1nk=1pf(x(ui,vj,wk),y(ui,vj,wk),z(ui,vj,wk)) |(x,y,z)(u,v,w)|ΔuΔvΔwSf(x(u,v,w),y(u,v,w),z(u,v,w)) |(x,y,z)(u,v,w)| du dv dw{\displaystyle {\begin{aligned}\iiint _{R}f(x,y,z)dV&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x_{i},y_{j},z_{k})\Delta V\\&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\Delta V_{2}\\{\text{Since }}&\Delta V_{2}\approx \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\Delta u\Delta v\Delta w\\\sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\Delta V_{2}&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\ \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\Delta u\Delta v\Delta w\\&\approx \iiint _{S}f(x(u,v,w),y(u,v,w),z(u,v,w))\ \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\ du\ dv\ dw\\\end{aligned}}}

Then, we have the following theorem which is analogous to the theorem for double integrals. Again, we should aware that the above explanations arenot proof of this theorem.

Theorem. (Change of variables for triple integration)SupposeT{\displaystyle T} is aC1{\displaystyle C^{1}} transformation whose Jacobian is nonzero and that maps a regionS{\displaystyle S} in theuvw{\displaystyle uvw}-space onto a regionR{\displaystyle R} in thexyz{\displaystyle xyz}-space injectively, via the change of variablesx=x(u,v,w),y=y(u,v,w){\displaystyle x=x(u,v,w),y=y(u,v,w)} andz=z(u,v,w){\displaystyle z=z(u,v,w)}. Suppose thatf{\displaystyle f} is continuous onR{\displaystyle R}, we haveRf(x,y,z)dxdydz=Sf(x(u,v,w),y(u,v,w),z(u,v,w))|(x,y,z)(u,v,w)|dudvdw{\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}f(x(u,v,w),y(u,v,w),z(u,v,w))\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\,du\,dv\,dw}

Remark.

Sf(u(x,y,z),v(x,y,z),w(x,y,z))|(u,v,w)(x,y,z)|dxdydz=Rf(u,v,w)dudvdw.{\displaystyle \iiint _{S}f(u(x,y,z),v(x,y,z),w(x,y,z))\left|{\frac {\partial (u,v,w)}{\partial (x,y,z)}}\right|\,dx\,dy\,dz=\iiint _{R}f(u,v,w)\,du\,dv\,dw.}(T{\displaystyle T} maps a regionS{\displaystyle S} inxyz{\displaystyle xyz}-space onto a regionR{\displaystyle R} inuvw{\displaystyle uvw}-space in this case.)which may be a more convenient form to be used sometimes.

Example.

1

Choose correct statement(s) from the following statements.

(x,y,u)(x,y,v)=uv.{\displaystyle {\frac {\partial (x,y,u)}{\partial (x,y,v)}}={\frac {\partial u}{\partial v}}.}
Dxyz|(u,v,w)(x,y,z)|dxdydz{\displaystyle \iiint _{D}xyz\left|{\frac {\partial (u,v,w)}{\partial (x,y,z)}}\right|\,dx\,dy\,dz} gives the 4-dimensional volume under the graph off(x,y,z)=xyz{\displaystyle f(x,y,z)=xyz} over the regionD{\displaystyle D} inxyz{\displaystyle xyz}-space.
D(uvw)dudvdw{\displaystyle \iiint _{D}(uvw)\,du\,dv\,dw} gives the 4-dimensional volume under the graph off(u,v,w)=uvw{\displaystyle f(u,v,w)=uvw} over the regionD{\displaystyle D} inuvw{\displaystyle uvw}-space.
D|(x,y,z)(u,v,w)|dudvdw{\displaystyle \iiint _{D}\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\,du\,dv\,dw} gives the volume of the regionD{\displaystyle D'} inxyz{\displaystyle xyz}-space, that is mapped from the regionD{\displaystyle D} inuvw{\displaystyle uvw}-space by a transformation satisfying the conditions mentioned in the theorem about change of variables in a triple integral.

Now, we understand the purpose and the derivation of the Jacobian. It is time to apply this new knowledge to some examples. The first two examples consist of the change of coordinates from the Cartesian coordinate system into the polar coordinate system and the change of Cartesian to spherical coordinates.

Change of coordinate system

[edit |edit source]

Sometimes, we may change the region we are integrating over to another region in other coordinate system. This can simplify the computation of integrals, especially when the region in Cartesian coordinate system is related to circle, e.g. sphere, cone, circle, etc.

Let us start with the change of coordinates from the Cartesian coordinate system into the polar coordinate system.

Proposition. (Changing Cartesian coordinate system to polar coordinate system for double integration)Letf(x,y){\displaystyle f(x,y)} be a continuous function defined usingCartesian coordinates, and letg(r,θ)=f(rcosθ,rsinθ){\displaystyle g(r,\theta )=f(r\cos \theta ,r\sin \theta )} be thesame function expressed usingpolar coordinates.Suppose the regionS{\displaystyle S} in the polar coordinates is mapped injectively to the regionR{\displaystyle R} in the Cartesian coordinates. Then,Rf(x,y)dxdy=Sg(r,θ)rdrdθ.{\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}g(r,\theta ){\color {green}{r}}\,dr\,d\theta .}

Proof.If we change from Cartesian coordinate system to polar coordinate system, we have the relationshipsx=rcosθ and y=rsinθ.{\displaystyle x=r\cos \theta {\text{ and }}y=r\sin \theta .}Thus, the Jacobian is(x,y)(r,θ)=|xrxθyryθ|=|cosθrsinθsinθrcosθ|=r(cos2θ+sin2θ)=r.{\displaystyle {\frac {\partial (x,y)}{\partial (r,\theta )}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \theta }}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \theta }}\end{vmatrix}}={\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{vmatrix}}=r\left(\cos ^{2}\theta +\sin ^{2}\theta \right)=r.}By the theorem about change of variables for double integration,Rf(x,y)dxdy=Sf(rcosθ,rsinθ)|(x,y)(r,θ)|drdθ=Sg(r,θ)rdrdθ.{\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}f(r\cos \theta ,r\sin \theta )\left|{\frac {\partial (x,y)}{\partial (r,\theta )}}\right|\,dr\,d\theta =\iint _{S}g(r,\theta )r\,dr\,d\theta .}{\displaystyle \Box }

Proposition. (Changing Cartesian coordinate system to cylindrical coordinate system for triple integration)Letf(x,y,z){\displaystyle f(x,y,z)} be a continuous function defined usingCartesian coordinates, and letg(r,θ,z)=f(rcosθ,rsinθ,z){\displaystyle g(r,\theta ,z)=f(r\cos \theta ,r\sin \theta ,z)} be thesame function expressed usingcylindrical coordinates. Suppose the regionS{\displaystyle S} in the cylindrical coordinates is mapped injectively to the regionR{\displaystyle R} in the Cartesian coordinates. Then,Rf(x,y,z)dxdydz=Sg(r,θ,z)rdrdθdz.{\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}g(r,\theta ,z){\color {green}{r}}\,dr\,d\theta \,dz.}

Proposition. (Changing Cartesian coordinate system to spherical coordinate system for triple integration)Letf(x,y,z){\displaystyle f(x,y,z)} be a continuous function defined usingCartesian coordinates, and letg(ρ,ϕ,θ)=f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ){\displaystyle g(\rho ,\phi ,\theta )=f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )} be thesame function expressed usingspherical coordinates. Suppose the regionS{\displaystyle S} in the spherical coordinates is mapped injectively to the regionR{\displaystyle R} in the Cartesian coordinates. Then,Rf(x,y,z)dxdydz=Sg(ρ,ϕ,θ)ρ2sinϕdρdϕdθ.{\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}g(\rho ,\phi ,\theta ){\color {green}{\rho ^{2}\sin \phi }}\,d\rho \,d\phi \,d\theta .}

Proof.

Illustration of Rule of Sarrus. Red arrows correspond to the positive terms, and blue arrows correspond to the negative terms.

If we change from Cartesian coordinates to spherical coordinates, we have the relationshipsx=ρsinϕcosθ,y=ρsinϕsinθandz=ρcosϕ.{\displaystyle x=\rho \sin \phi \cos \theta ,\,y=\rho \sin \phi \sin \theta \;{\text{and}}\;z=\rho \cos \phi .}Thus, the Jacobian is(x,y,z)(ρ,ϕ,θ)=|xρxϕxθyρyϕyθzρzϕzθ|=|sinϕcosθρcosϕcosθρsinϕsinθsinϕsinθρcosϕsinθρsinϕsinθcosϕρsinϕ0|=0+ρ2sinϕcos2ϕcos2θ+ρ2sin3ϕsin2θ(ρ2sinϕcos2ϕsin2θ)(ρ2sin3ϕcos2θ)0by Rule of Sarrus=ρ2sinϕcos2ϕ(sin2θ+cos2θ1)+ρ2sin3ϕsinϕsin2ϕ(sin2θ+cos2θ1)=ρ2sinϕ(cos2ϕ+sin2ϕ1)=ρ2sinϕ.{\displaystyle {\begin{aligned}{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}&={\begin{vmatrix}{\frac {\partial x}{\partial \rho }}&{\frac {\partial x}{\partial \phi }}&{\frac {\partial x}{\partial \theta }}\\{\frac {\partial y}{\partial \rho }}&{\frac {\partial y}{\partial \phi }}&{\frac {\partial y}{\partial \theta }}\\{\frac {\partial z}{\partial \rho }}&{\frac {\partial z}{\partial \phi }}&{\frac {\partial z}{\partial \theta }}\\\end{vmatrix}}\\&={\begin{vmatrix}\sin \phi \cos \theta &\rho \cos \phi \cos \theta &-\rho \sin \phi \sin \theta \\\sin \phi \sin \theta &\rho \cos \phi \sin \theta &\rho \sin \phi \sin \theta \\\cos \phi &-\rho \sin \phi &0\end{vmatrix}}\\&=0{\color {purple}+\rho ^{2}\sin \phi \cos ^{2}\phi \cos ^{2}\theta }{\color {brown}+\rho ^{2}\sin ^{3}\phi \sin ^{2}\theta }{\color {purple}-(-\rho ^{2}\sin \phi \cos ^{2}\phi \sin ^{2}\theta )}{\color {brown}-(-\rho ^{2}\sin ^{3}\phi \cos ^{2}\theta )}-0\qquad {\text{by Rule of Sarrus}}\\&={\color {purple}\rho ^{2}\sin \phi \cos ^{2}\phi (\underbrace {\sin ^{2}\theta +\cos ^{2}\theta } _{1})}{\color {brown}+\rho ^{2}\underbrace {\sin ^{3}\phi } _{\sin \phi \sin ^{2}\phi }(\underbrace {\sin ^{2}\theta +\cos ^{2}\theta } _{1})}\\&=\rho ^{2}\sin \phi \left(\underbrace {{\color {purple}\cos ^{2}\phi }{\color {brown}+\sin ^{2}\phi }} _{1}\right)\\&=\rho ^{2}\sin \phi .\end{aligned}}}By the theorem about change of variables for triple integration,Rf(x,y,z)dxdydz=Sf(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)|(x,y,z)(ρ,ϕ,θ)|dρdϕdθ=Sg(ρ,ϕ,θ)ρ20sinϕ0since0ϕπdρdϕdθ.{\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )\left|{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}\right|\,d\rho \,d\phi \,d\theta =\iiint _{S}g(\rho ,\phi ,\theta )\underbrace {\rho ^{2}} _{\geq 0}\overbrace {\sin \phi } ^{\geq 0\;{\text{since}}\;0\leq \phi \leq \pi }\,d\rho \,d\phi \,d\theta .}{\displaystyle \Box }

Example. Provethe proposition about changing Cartesian coordinate system to cylindrical coordinate system for triple integration. (Hint: the proof is quite similar to that forthe proposition about changing Cartesian coordinate system to polar coordinate system for double integration, and you may find some results in the steps in the proof useful)

Proof.

If we change from Cartesian coordinate system tocylindrical coordinate system, we have the relationshipsx=rcosθ,y=rsinθandz=z.{\displaystyle x=r\cos \theta ,\,y=r\sin \theta \;{\text{and}}\;{\color {green}{z=z}}.}Thus, the Jacobian is(x,y,z)(r,θ,z)=|xrxθxzyryθyzzrzθzz|=|cosθrsinθ0sinθrcosθ0001|=00+|cosθrsinθsinθrcosθ|by cofactor expansion along 3rd row=r.{\displaystyle {\frac {\partial (x,y,{\color {green}z})}{\partial (r,\theta ,{\color {green}z})}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \theta }}&{\color {green}{\frac {\partial x}{\partial z}}}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \theta }}&{\color {green}{\frac {\partial y}{\partial z}}}\\{\color {green}{\frac {\partial z}{\partial r}}}&{\color {green}{\frac {\partial z}{\partial \theta }}}&{\color {green}{\frac {\partial z}{\partial z}}}\end{vmatrix}}={\begin{vmatrix}\cos \theta &-r\sin \theta &{\color {green}{0}}\\\sin \theta &r\cos \theta &{\color {green}{0}}\\{\color {green}0}&{\color {green}0}&{\color {green}1}\end{vmatrix}}=\underbrace {0-0+{\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{vmatrix}}} _{\text{by cofactor expansion along 3rd row}}=r.}By the theorem about change of variables fortriple integration,Rf(x,y,z)dxdydz=Sf(rcosθ,rsinθ,z)|(x,y,z)(r,θ,z)|drdθdz=Sg(r,θ,z)rdrdθdz.{\displaystyle \iiint _{R}f(x,y,{\color {green}z})\,dx\,dy\,{\color {green}dz}=\iiint _{S}f(r\cos \theta ,r\sin \theta ,{\color {green}z})\left|{\frac {\partial (x,y,{\color {green}z})}{\partial (r,\theta ,{\color {green}z})}}\right|\,dr\,d\theta \,{\color {green}dz}=\iiint _{S}g(r,\theta ,{\color {green}z})r\,dr\,d\theta \,{\color {green}dz}.}{\displaystyle \Box }

Example. (Volume of the cone)Prove that the volume of a cone with radiusa{\displaystyle a} and heighth{\displaystyle h} is13πa2h{\displaystyle {\frac {1}{3}}\pi a^{2}h} by triple integration. (Hint: You may put the base of the cone on thexy{\displaystyle xy}-plane with centre(0,0,0){\displaystyle (0,0,0)}, point the cone to the direction of positivez{\displaystyle z}-axis, and use cylindrical coordinates)

Proof.

First, put the cone as instructed in the hint.Let the region bounded by the cone in Cartesian coordinate system and cylindrical coordinate system beC{\displaystyle C} andC{\displaystyle C'} respectively. Then, using cylindrical coordinates, by the proposition about triple integration using cylindrical coordinates and the proposition about volume given by triple integration, the desired volume isC1dV=Crdrdθdz.{\displaystyle \iiint _{C}1\,dV=\iiint _{C'}r\,dr\,d\theta \,dz.}Next, we need to find the bounds forr,θ{\displaystyle r,\theta } andz{\displaystyle z} in the regionC{\displaystyle C'}.

First, the bounds forθ{\displaystyle \theta } is0θ2π{\displaystyle 0\leq \theta \leq 2\pi } (by the definition of cylindrical coordinates).

Then, given a fixedθ{\displaystyle \theta }, we consider the correspondingrz{\displaystyle rz}-plane to see whether we can obtain any relationship betweenr{\displaystyle r} andz{\displaystyle z}.Since the region in therz{\displaystyle rz}-plane (it isxz{\displaystyle xz}-plane in Cartesian coordinate system whenθ=0{\displaystyle \theta =0}) over which the integral is taken is thetriangle with vertices(0,0),(0,h){\displaystyle (0,0),\,(0,h)} and(a,0){\displaystyle (a,0)}, for which the equation of the region iszhar+hzhra+1ra+zh1{\displaystyle {\color {green}z}\leq {\frac {-h}{a}}{\color {green}r}+h\implies {\frac {\color {green}z}{h}}\leq -{\frac {\color {green}r}{a}}+1\implies {\frac {\color {green}r}{a}}+{\frac {\color {green}z}{h}}\leq 1} Therefore, given a fixedθ{\displaystyle \theta }rara+zh010by definitionra,{\displaystyle {\frac {r}{a}}\leq {\frac {r}{a}}+\underbrace {\frac {z}{h}} _{\geq 0}\leq 1\implies \underbrace {0\leq } _{\text{by definition}}r\leq a,}(this shows thatr{\displaystyle r} is actually independent fromθ{\displaystyle \theta }.)and given fixedr,θ{\displaystyle r,\theta },zh+ra10zby coneh(1ra).{\displaystyle {\frac {z}{h}}+{\frac {r}{a}}\leq 1\implies \underbrace {0\leq z} _{\text{by cone}}\leq h\left(1-{\frac {r}{a}}\right).}(this shows thatz{\displaystyle z} is actually independent fromθ{\displaystyle \theta }.)Therefore, the desired volume isCrdrdθdz=02π0a0h(1ra)rdzdrdθby generalized Fubini's theorem for triple integration=02π0arh(1ra)drdθ=02π[hr22hr33a]r=0r=adθ=h02π(a22a323aa2/6)dθ=(2π)a26=13πa2h{\displaystyle {\begin{aligned}\iiint _{C'}r\,dr\,d\theta \,dz&=\int _{0}^{2\pi }\int _{0}^{a}\int _{0}^{h\left(1-{\frac {r}{a}}\right)}r\,dz\,dr\,d\theta \qquad {\text{by generalized Fubini's theorem for triple integration}}\\&=\int _{0}^{2\pi }\int _{0}^{a}rh\left(1-{\frac {r}{a}}\right)\,dr\,d\theta \\&=\int _{0}^{2\pi }\left[{\frac {hr^{2}}{2}}-{\frac {hr^{3}}{3a}}\right]_{r=0}^{r=a}\,d\theta \\&=h\int _{0}^{2\pi }\left(\underbrace {{\frac {a^{2}}{2}}-{\frac {a^{{\cancel {3}}2}}{3{\cancel {a}}}}} _{a^{2}/6}\right)\,d\theta \\&={\frac {(2\pi )a^{2}}{6}}\\&={\frac {1}{3}}\pi a^{2}h\end{aligned}}}{\displaystyle \Box }

Example. (Volume of the sphere)Prove that the volume of a sphere of radiusr{\displaystyle r} is43πr3{\displaystyle {\frac {4}{3}}\pi r^{3}} by triple integration. (Hint: You may put the centre of the sphere to the origin, i.e.,(0,0,0){\displaystyle (0,0,0)}.)

Proof.

First, put the centre of the sphere to the origin. LetS{\displaystyle S} andS{\displaystyle S'} be the region bounded by the sphere in Cartesian coordinate system and spherical coordinate system respectively.Usingspherical coordinates, by the proposition about triple integration using spherical coordinates, the desired volume isS1dV=Sρ2sinϕdρdϕdθ.{\displaystyle \iiint _{S}1\,dV=\iiint _{S'}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta .}Since the bounds forρ,ϕ,θ{\displaystyle \rho ,\phi ,\theta } are0ρr,0ϕπ{\displaystyle 0\leq \rho \leq r,\,0\leq \phi \leq \pi } and0θ2π{\displaystyle 0\leq \theta \leq 2\pi } (by the definition of spherical coordinates) in the regionS{\displaystyle S'},the desired volume isSρ2sinϕdρdϕdθ=02π0π0rρ2sinϕdρdϕdθ=1302π0πr3sinϕdϕdθ=13r302π(cos(π)1cos01)2dθ=23r3(2π)=43πr3.{\displaystyle {\begin{aligned}\iiint _{S'}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta &=\int _{0}^{2\pi }\int _{0}^{\pi }\int _{0}^{r}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta \\&={\frac {1}{3}}\int _{0}^{2\pi }\int _{0}^{\pi }r^{3}\sin \phi \,d\phi \,d\theta \\&={\frac {1}{3}}r^{3}\int _{0}^{2\pi }\overbrace {-(\underbrace {\cos(\pi )} _{-1}-\underbrace {\cos 0} _{1})} ^{2}\,d\theta \\&={\frac {2}{3}}r^{3}(2\pi )\\&={\frac {4}{3}}\pi r^{3}.\end{aligned}}}

Navigation:Main Page ·Precalculus ·Limits ·Differentiation ·Integration ·Parametric and Polar Equations ·Sequences and Series ·Multivariable Calculus ·Extensions ·References

← Multiple integrationCalculusVector calculus →
Change of variables
Retrieved from "https://en.wikibooks.org/w/index.php?title=Calculus/Change_of_variables&oldid=4057893"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp