Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Isotopes of zirconium

(Redirected fromZirconium-93)

Naturally occurringzirconium (40Zr) is composed of four stableisotopes (of which onemay in the future be found radioactive), and one very long-livedradioisotope (96Zr), aprimordial nuclide that decays viadouble beta decay with an observedhalf-life of 2.0×1019 years;[4] it can also undergo singlebeta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years.[5] The second most stable radioisotope is93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for95Zr (64.02 days),88Zr (83.4 days), and89Zr (78.41 hours). The primary decay mode iselectron capture for isotopes lighter than92Zr, and the primary mode for heavier isotopes is beta decay.

Isotopes ofzirconium (40Zr)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
88Zrsynth83.4 dε88Y
γ
89Zrsynth78.4 hε89Y
β+89Y
γ
90Zr51.5%stable
91Zr11.2%stable
92Zr17.1%stable
93Zrtrace1.53×106 yβ93Nb
94Zr17.4%stable
95Zrsynth64.032 dβ95Nb
96Zr2.80%2.34×1019 yββ96Mo
Standard atomic weightAr°(Zr)

List of isotopes

edit
Nuclide
[n 1]
ZNIsotopic mass(Da)[6]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 5]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
77Zr403776.96608(43)#100# μs3/2−#
78Zr403877.95615(43)#50# ms
[>200 ns]
0+
79Zr403978.94979(32)#56(30) msβ+79Y5/2+#
80Zr404079.94121(32)#4.6(6) sβ+80Y0+
81Zr404180.938245(99)5.5(4) sβ+ (99.88%)81Y(3/2−)
β+,p (0.12%)80Sr
82Zr404281.9317075(17)32(5) sβ+82Y0+
83Zr404382.9292409(69)42(2) sβ+83Y1/2−#
β+, p (?%)82Sr
83m1Zr52.72(5) keV0.53(12) μsIT83Zr(5/2−)
83m2Zr77.04(7) keV1.8(1) μsIT83Zr(7/2+)
84Zr404483.9233257(59)25.8(5) minβ+84Y0+
85Zr404584.9214432(69)7.86(4) minβ+85Y(7/2+)
85mZr292.2(3) keV10.9(3) sIT (?%)85Zr1/2−#
β+ (?%)85Y
86Zr404685.9162968(38)16.5(1) hβ+86Y0+
87Zr404786.9148173(45)1.68(1) hβ+87Y9/2+
87mZr335.84(19) keV14.0(2) sIT87Zr1/2−
88Zr[n 8]404887.9102207(58)83.4(3) dEC88Y0+
88mZr2887.79(6) keV1.320(25) μsIT88Zr8+
89Zr404988.9088798(30)78.360(23) hβ+89Y9/2+
89mZr587.82(10) keV4.161(10) minIT (93.77%)89Zr1/2−
β+ (6.23%)89Y
90Zr[n 9]405089.90469876(13)Stable0+0.5145(4)
90m1Zr2319.000(9) keV809.2(20) msIT90Zr5-
90m2Zr3589.418(15) keV131(4) nsIT90Zr8+
91Zr[n 9]405190.90564021(10)Stable5/2+0.1122(5)
91mZr3167.3(4) keV4.35(14) μsIT91Zr(21/2+)
92Zr[n 9]405291.90503534(10)Stable0+0.1715(3)
93Zr[n 10]405392.90647066(49)1.61(5)×106 yβ (73%)[7]93m1Nb5/2+
β (27%)[7]93Nb
94Zr[n 9]405493.90631252(18)Observationally stable[n 11]0+0.1738(4)
95Zr[n 9]405594.90804028(93)64.032(6) dβ95Nb5/2+
96Zr[n 12][n 9][n 13]405695.90827762(12)2.34(17)×1019 yββ[n 14]96Mo0+0.0280(2)
97Zr405796.91096380(13)16.749(8) hβ97mNb1/2+
97mZr1264.35(16) keV104.8(17) nsIT97Zr7/2+
98Zr405897.9127404(91)30.7(4) sβ98Nb0+
98mZr6601.9(11) keV1.9(2) μsIT98Zr(17−)
99Zr405998.916675(11)2.1(1) sβ99mNb1/2+
99mZr251.96(9) keV336(5) nsIT99Zr7/2+
100Zr406099.9180105(87)7.1(4) sβ100Nb0+
101Zr4061100.9214585(89)2.29(8) sβ101Nb3/2+
102Zr4062101.9231542(94)2.01(8) sβ102Nb0+
103Zr4063102.9272041(99)1.38(7) sβ (>99%)103Nb(5/2−)
β,n (<1%)102Nb
104Zr4064103.929449(10)920(28) msβ (>99%)104Nb0+
β, n (<1%)103Nb
105Zr4065104.934022(13)670(28) msβ (>98%)105Nb1/2+#
β, n (<2%)104Nb
106Zr4066105.93693(22)#179(6) msβ (>98%)106Nb0+
β, n (<2%)105Nb
107Zr4067106.94201(32)#145.7(24) msβ (>77%)107Nb5/2+#
β, n (<23%)106Nb
108Zr4068107.94530(43)#78.5(20) msβ108Nb0+
108mZr2074.5(8) keV540(30) nsIT108Zr(6+)
109Zr4069108.95091(54)#56(3) msβ109Nb5/2+#
110Zr4070109.95468(54)#37.5(20) msβ110Nb0+
111Zr4071110.96084(64)#24.0(5) msβ111Nb5/2+#
112Zr4072111.96520(75)#43(21) msβ112Nb0+
113Zr4073112.97172(32)#15# ms
[>550 ns]
3/2+
114Zr[9]40740+
This table header & footer:
  1. ^mZr – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^Second most powerful knownneutron absorber
  9. ^abcdefFission product
  10. ^Long-lived fission product
  11. ^Believed to decay by ββ to94Mo with a half-life over 1.1×1017 years
  12. ^Primordialradionuclide
  13. ^Predicted to be capable of undergoingtriple beta decay and quadruple beta decay with very long partial half-lives
  14. ^Theorized to also undergo β decay to96Nb with apartial half-life greater than 2.4×1019 y[8]

Zirconium-88

edit

88Zr is aradioisotope ofzirconium with a half-life of 83.4 days. In January 2019, this isotope was discovered to have aneutron capturecross section of approximately 861,000 barns; this is several orders of magnitude greater than predicted, and greater than that of any other nuclide exceptxenon-135.[10]

Zirconium-89

edit

89Zr is a radioisotope of zirconium with ahalf-life of 78.41 hours. It is produced by proton irradiation of natural yttrium-89. Its most prominent gamma photon has an energy of 909 keV.

Zirconium-89 is employed in specialized diagnostic applications usingpositron emission tomography[11] imaging, for example, with zirconium-89 labeled antibodies (immuno-PET).[12] For a decay table, seeMaria Vosjan."Zirconium-89 (89Zr)". Cyclotron.nl.

Zirconium-93

edit
Yield, % perfission[13]
ThermalFast14 MeV
232Thnotfissile6.70 ± 0.405.58 ± 0.16
233U6.979 ± 0.0986.94 ± 0.075.38 ± 0.32
235U6.346 ± 0.0446.25 ± 0.045.19 ± 0.31
238Unotfissile4.913 ± 0.0984.53 ± 0.13
239Pu3.80 ± 0.033.82 ± 0.033.0 ± 0.3
241Pu2.98 ± 0.042.98 ± 0.33?
Nuclidet12YieldQ[a 1]βγ
(Ma)(%)[a 2](keV)
99Tc0.2116.1385294β
126Sn0.2300.10844050[a 3]βγ
79Se0.3270.0447151β
135Cs1.336.9110[a 4]269β
93Zr1.535.457591βγ
107Pd6.5  1.249933β
129I16.14  0.8410194βγ
  1. ^Decay energy is split amongβ,neutrino, andγ if any.
  2. ^Per 65 thermal neutron fissions of235U and 35 of239Pu.
  3. ^Has decay energy 380 keV, but its decay product126Sb has decay energy 3.67 MeV.
  4. ^Lower in thermal reactors because135Xe, its predecessor,readily absorbs neutrons.

93Zr is aradioisotope ofzirconium with ahalf-life of 1.53 million years, decaying through emission of a low-energybeta particle. 73% of decays populate anexcited state ofniobium-93, which decays with a half-life of 14 years and a low-energygamma ray to the stable ground state of93Nb, while the remaining 27% of decays directly populate the ground state.[7] It is one of only 7long-lived fission products. The low specific activity and low energy of its radiations limit the radioactive hazards of this isotope.

Nuclear fission produces it at a fission yield of 6.3% (thermal neutron fission of235U), on a par with the other most abundant fission products. Nuclear reactors usually contain large amounts of zirconium asfuel rodcladding (seezircaloy), and neutron irradiation of92Zr also produces some93Zr, though this is limited by92Zr's lowneutron capturecross section of 0.22barns. Indeed, one of the primary reasons for using zirconium in fuel rod cladding is its low cross section.

93Zr also has a lowneutron capturecross section of 0.7 barns.[14][15] Most fission zirconium consists of other isotopes; the other isotope with a significant neutron absorption cross section is91Zr with a cross section of 1.24 barns.93Zr is a less attractive candidate for disposal bynuclear transmutation than are99Tc and129I. Mobility in soil is relatively low, so thatgeological disposal may be an adequate solution. Alternatively, if the effect on theneutron economy of93
Zr
's higher cross section is deemed acceptable, irradiated cladding and fission product Zirconium (which are mixed together in most currentnuclear reprocessing methods) could be used to form new zircalloy cladding. Once the cladding is inside the reactor, the relatively low level radioactivity can be tolerated, but transport and manufacturing might require special precautions.

References

edit
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Zirconium".CIAAW. 2024.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^"List of Adopted Double Beta (ββ) Decay Values". National Nuclear Data Center, Brookhaven National Laboratory.
  5. ^H Heiskanen; M T Mustonen; J Suhonen (30 March 2007)."Theoretical half-life for beta decay of96Zr".Journal of Physics G: Nuclear and Particle Physics.34 (5):837–843.doi:10.1088/0954-3899/34/5/005.
  6. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  7. ^abcCassette, P.; Chartier, F.; Isnard, H.; Fréchou, C.; Laszak, I.; Degros, J.P.; Bé, M.M.; Lépy, M.C.; Tartes, I. (2010)."Determination of93Zr decay scheme and half-life".Applied Radiation and Isotopes.68 (1):122–130.doi:10.1016/j.apradiso.2009.08.011.PMID 19734052.
  8. ^Finch, S.W.; Tornow, W. (2016)."Search for the β decay of96Zr".Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.806:70–74.Bibcode:2016NIMPA.806...70F.doi:10.1016/j.nima.2015.09.098.
  9. ^Sumikama, T.; et al. (2021)."Observation of new neutron-rich isotopes in the vicinity of Zr110".Physical Review C.103 (1): 014614.Bibcode:2021PhRvC.103a4614S.doi:10.1103/PhysRevC.103.014614.hdl:10261/260248.S2CID 234019083.
  10. ^Shusterman, J.A.; Scielzo, N.D.; Thomas, K.J.; Norman, E.B.; Lapi, S.E.; Loveless, C.S.; Peters, N.J.; Robertson, J.D.; Shaughnessy, D.A.; Tonchev, A.P. (2019)."The surprisingly large neutron capture cross-section of88Zr".Nature.565 (7739):328–330.Bibcode:2019Natur.565..328S.doi:10.1038/s41586-018-0838-z.OSTI 1512575.PMID 30617314.S2CID 57574387.
  11. ^Dilworth, Jonathan R.; Pascu, Sofia I. (2018). "The chemistry of PET imaging with zirconium-89".Chemical Society Reviews.47 (8):2554–2571.doi:10.1039/C7CS00014F.PMID 29557435.
  12. ^Van Dongen, GA; Vosjan, MJ (August 2010). "Immuno-positron emission tomography: shedding light on clinical antibody therapy".Cancer Biotherapy and Radiopharmaceuticals.25 (4):375–85.doi:10.1089/cbr.2010.0812.PMID 20707716.
  13. ^M. B. Chadwick et al, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at www-nds.iaea.org/exfor/endf.htm)
  14. ^"ENDF/B-VII.1 Zr-93(n,g)". National Nuclear Data Center, Brookhaven National Laboratory. 2011-12-22. Archived fromthe original on 2009-07-20. Retrieved2014-11-20.
  15. ^S. Nakamura; et al. (2007). "Thermal neutron capture cross-sections of Zirconium-91 and Zirconium-93 by prompt gamma-ray spectroscopy".Journal of Nuclear Science and Technology.44 (1):21–28.Bibcode:2007JNST...44...21N.doi:10.1080/18811248.2007.9711252.S2CID 96087661.

[8]ページ先頭

©2009-2025 Movatter.jp