Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Zernike polynomials

From Wikipedia, the free encyclopedia
Polynomial sequence

The first 21 Zernike polynomials, ordered vertically by radial degree and horizontally by azimuthal degree

Inmathematics, theZernike polynomials are asequence ofpolynomials that areorthogonal on theunit disk. Named after optical physicistFrits Zernike, laureate of the 1953Nobel Prize in Physics and the inventor ofphase-contrast microscopy, they play important roles in various optics branches such as beamoptics and imaging.[1][2]

Definitions

[edit]

There areeven and odd Zernike polynomials. The even Zernike polynomials are defined as

Znm(ρ,φ)=Rnm(ρ)cos(mφ){\displaystyle Z_{n}^{m}(\rho ,\varphi )=R_{n}^{m}(\rho )\,\cos(m\,\varphi )\!}

(even function over the azimuthal angleφ{\displaystyle \varphi }), and the odd Zernike polynomials are defined as

Znm(ρ,φ)=Rnm(ρ)sin(mφ),{\displaystyle Z_{n}^{-m}(\rho ,\varphi )=R_{n}^{m}(\rho )\,\sin(m\,\varphi ),\!}

(odd function over the azimuthal angleφ{\displaystyle \varphi }) wherem andn are nonnegativeintegers withn ≥ m ≥ 0 (m = 0 for spherical Zernike polynomials),φ{\displaystyle \varphi } is theazimuthalangle,ρ is the radial distance0ρ1{\displaystyle 0\leq \rho \leq 1}, andRnm{\displaystyle R_{n}^{m}} are the radial polynomials defined below. Zernike polynomials have the property of being limited to a range of −1 to +1 in the unit disk, i.e.|Znm(ρ,φ)|1{\displaystyle |Z_{n}^{m}(\rho ,\varphi )|\leq 1} ifρ1{\displaystyle \rho \leq 1}. The radial polynomialsRnm{\displaystyle R_{n}^{m}} are defined as

Rnm(ρ)=k=0nm2(1)k(nk)!k!(n+m2k)!(nm2k)!ρn2k{\displaystyle R_{n}^{m}(\rho )=\sum _{k=0}^{\tfrac {n-m}{2}}{\frac {(-1)^{k}\,(n-k)!}{k!\left({\tfrac {n+m}{2}}-k\right)!\left({\tfrac {n-m}{2}}-k\right)!}}\;\rho ^{n-2k}}

for evennm, while it is 0 for oddnm. A special value is

Rnm(1)=1.{\displaystyle R_{n}^{m}(1)=1.}

Other representations

[edit]

Rewriting the ratios of factorials in the radial part as products ofbinomials shows that the coefficients are integer numbers:

Rnm(ρ)=k=0nm2(1)k(nkk)(n2knm2k)ρn2k{\displaystyle R_{n}^{m}(\rho )=\sum _{k=0}^{\tfrac {n-m}{2}}(-1)^{k}{\binom {n-k}{k}}{\binom {n-2k}{{\tfrac {n-m}{2}}-k}}\rho ^{n-2k}}.

A notation as terminatingGaussian hypergeometric functions is useful to reveal recurrences, to demonstrate that they are special cases ofJacobi polynomials, to write down the differential equations, etc.:

Rnm(ρ)=(1)(nm)/2ρmP(nm)/2(m,0)(12ρ2)=(nn+m2)ρn 2F1(n+m2,nm2;n;ρ2)=(1)nm2(n+m2m)ρm 2F1(1+n+m2,nm2;1+m;ρ2){\displaystyle {\begin{aligned}R_{n}^{m}(\rho )&=(-1)^{(n-m)/2}\rho ^{m}P_{(n-m)/2}^{(m,0)}(1-2\rho ^{2})\\&={\binom {n}{\tfrac {n+m}{2}}}\rho ^{n}\ {}_{2}F_{1}\left(-{\tfrac {n+m}{2}},-{\tfrac {n-m}{2}};-n;\rho ^{-2}\right)\\&=(-1)^{\tfrac {n-m}{2}}{\binom {\tfrac {n+m}{2}}{m}}\rho ^{m}\ {}_{2}F_{1}\left(1+{\tfrac {n+m}{2}},-{\tfrac {n-m}{2}};1+m;\rho ^{2}\right)\end{aligned}}}

fornm even.

The inverse relation expandsρj{\displaystyle \rho ^{j}} for fixedmj{\displaystyle m\leq j} intoRnm(ρ){\displaystyle R_{n}^{m}(\rho )}

ρj=nm(mod2)jhj,n,mRnm(ρ){\displaystyle \rho ^{j}=\sum _{n\equiv m{\pmod {2}}}^{j}h_{j,n,m}R_{n}^{m}(\rho )}

with rational coefficientshj,n,m{\displaystyle h_{j,n,m}}[3]

hj,n,m=n+11+j+n2((jm)/2(nm)/2)((j+n)/2(nm)/2){\displaystyle h_{j,n,m}={\frac {n+1}{1+{\frac {j+n}{2}}}}{\frac {\binom {(j-m)/2}{(n-m)/2}}{\binom {(j+n)/2}{(n-m)/2}}}}

for evenjm=0,2,4,{\displaystyle j-m=0,2,4,\ldots }.

The factorρn2k{\displaystyle \rho ^{n-2k}} in the radial polynomialRnm(ρ){\displaystyle R_{n}^{m}(\rho )} may be expanded in aBernstein basis ofbs,n/2(ρ2){\displaystyle b_{s,n/2}(\rho ^{2})} for evenn{\displaystyle n} orρ{\displaystyle \rho } times a function ofbs,(n1)/2(ρ2){\displaystyle b_{s,(n-1)/2}(\rho ^{2})} for oddn{\displaystyle n} in the rangen/2ksn/2{\displaystyle \lfloor n/2\rfloor -k\leq s\leq \lfloor n/2\rfloor }. The radial polynomial may therefore be expressed by a finite number of Bernstein Polynomials with rational coefficients:

Rnm(ρ)=1(n/2m/2)ρnmod2s=m/2n/2(1)n/2s(sm/2)((n+m)/2s+m/2)bs,n/2(ρ2).{\displaystyle R_{n}^{m}(\rho )={\frac {1}{\binom {\lfloor n/2\rfloor }{\lfloor m/2\rfloor }}}\rho ^{n\mod 2}\sum _{s=\lfloor m/2\rfloor }^{\lfloor n/2\rfloor }(-1)^{\lfloor n/2\rfloor -s}{\binom {s}{\lfloor m/2\rfloor }}{\binom {(n+m)/2}{s+\lceil m/2\rceil }}b_{s,\lfloor n/2\rfloor }(\rho ^{2}).}

Rodrigues Formula

[edit]

The radial polynomials satisfy theRodrigues' formula

Rnm(x)=1(nm2)!xm(dd(x2))nm2[xn+m(x21)nm2].{\displaystyle R_{n}^{m}(x)={\frac {1}{\left({\frac {n-m}{2}}\right)!x^{m}}}\left({\frac {d}{d\left(x^{2}\right)}}\right)^{\frac {n-m}{2}}\left[x^{n+m}\left(x^{2}-1\right)^{\frac {n-m}{2}}\right].}

Properties

[edit]

Orthogonality

[edit]

The orthogonality in the radial part reads[4]

012n+2Rnm(ρ)2n+2Rnm(ρ)ρdρ=δn,n{\displaystyle \int _{0}^{1}{\sqrt {2n+2}}R_{n}^{m}(\rho )\,{\sqrt {2n'+2}}R_{n'}^{m}(\rho )\,\rho d\rho =\delta _{n,n'}}

or

10Rnm(ρ)Rnm(ρ)ρdρ=δn,n2n+2.{\displaystyle {\underset {0}{\overset {1}{\mathop {\int } }}}\,R_{n}^{m}(\rho )R_{{n}'}^{m}(\rho )\rho d\rho ={\frac {{\delta }_{n,{n}'}}{2n+2}}.}

Orthogonality in the angular part is represented by theelementary

02πcos(mφ)cos(mφ)dφ=ϵmπδm,m,{\displaystyle \int _{0}^{2\pi }\cos(m\varphi )\cos(m'\varphi )\,d\varphi =\epsilon _{m}\pi \delta _{m,m'},}
02πsin(mφ)sin(mφ)dφ=πδm,m;m0,{\displaystyle \int _{0}^{2\pi }\sin(m\varphi )\sin(m'\varphi )\,d\varphi =\pi \delta _{m,m'};\quad m\neq 0,}
02πcos(mφ)sin(mφ)dφ=0,{\displaystyle \int _{0}^{2\pi }\cos(m\varphi )\sin(m'\varphi )\,d\varphi =0,}

whereϵm{\displaystyle \epsilon _{m}} (sometimes called theNeumann factor because it frequently appears in conjunction with Bessel functions) is defined as2 ifm=0{\displaystyle m=0} and1 ifm0{\displaystyle m\neq 0}. The product of the angular and radial parts establishes the orthogonality of the Zernike functions with respect to both indices if integrated over the unit disk,

Znl(ρ,φ)Znl(ρ,φ)d2r=ϵlπ2n+2δn,nδl,l,{\displaystyle \int Z_{n}^{l}(\rho ,\varphi )Z_{n'}^{l'}(\rho ,\varphi )\,d^{2}r={\frac {\epsilon _{l}\pi }{2n+2}}\delta _{n,n'}\delta _{l,l'},}

whered2r=ρdρdφ{\displaystyle d^{2}r=\rho \,d\rho \,d\varphi } is theJacobian of the circular coordinate system, and wherenl{\displaystyle n-l} andnl{\displaystyle n'-l'} are both even.

Zernike transform

[edit]

Any sufficiently smooth real-valued phase field over the unit diskG(ρ,φ){\displaystyle G(\rho ,\varphi )} can be represented in terms of its Zernike coefficients (odd and even), just as periodic functions find an orthogonal representation with theFourier series. We have

G(ρ,φ)=m,n[am,nZnm(ρ,φ)+bm,nZnm(ρ,φ)],{\displaystyle G(\rho ,\varphi )=\sum _{m,n}\left[a_{m,n}Z_{n}^{m}(\rho ,\varphi )+b_{m,n}Z_{n}^{-m}(\rho ,\varphi )\right],}

where the coefficients can be calculated usinginner products. On the space ofL2{\displaystyle L^{2}} functions on the unit disk, there is an inner product defined by

F,G:=F(ρ,φ)G(ρ,φ)ρdρdφ.{\displaystyle \langle F,G\rangle :=\int F(\rho ,\varphi )G(\rho ,\varphi )\rho d\rho d\varphi .}

The Zernike coefficients can then be expressed as follows:

am,n=2n+2ϵmπG(ρ,φ),Znm(ρ,φ),bm,n=2n+2ϵmπG(ρ,φ),Znm(ρ,φ).{\displaystyle {\begin{aligned}a_{m,n}&={\frac {2n+2}{\epsilon _{m}\pi }}\left\langle G(\rho ,\varphi ),Z_{n}^{m}(\rho ,\varphi )\right\rangle ,\\b_{m,n}&={\frac {2n+2}{\epsilon _{m}\pi }}\left\langle G(\rho ,\varphi ),Z_{n}^{-m}(\rho ,\varphi )\right\rangle .\end{aligned}}}

Alternatively, one can use the known values of phase functionG on the circular grid to form a system of equations. The phase function is retrieved by the unknown-coefficient weighted product with (known values) of Zernike polynomial across the unit grid. Hence, coefficients can also be found by solving a linear system, for instance by matrix inversion. Fast algorithms to calculate the forward and inverse Zernike transform use symmetry properties oftrigonometric functions, separability of radial and azimuthal parts of Zernike polynomials, and their rotational symmetries.

Symmetries

[edit]

Thereflections of trigonometric functions result that the parity with respect to reflection along thex axis is

Znl(ρ,φ)=Znl(ρ,φ){\displaystyle Z_{n}^{l}(\rho ,\varphi )=Z_{n}^{l}(\rho ,-\varphi )} forl ≥ 0,
Znl(ρ,φ)=Znl(ρ,φ){\displaystyle Z_{n}^{l}(\rho ,\varphi )=-Z_{n}^{l}(\rho ,-\varphi )} forl < 0.

Theπ shifts of trigonometric functions result that the parity with respect topoint reflection at the center of coordinates is

Znl(ρ,φ)=(1)lZnl(ρ,φ+π),{\displaystyle Z_{n}^{l}(\rho ,\varphi )=(-1)^{l}Z_{n}^{l}(\rho ,\varphi +\pi ),}

where(1)l{\displaystyle (-1)^{l}} could as well be written(1)n{\displaystyle (-1)^{n}} becausenl{\displaystyle n-l} as even numbers are only cases to get non-vanishing Zernike polynomials. (Ifn is even thenl is also even. Ifn is odd, thenl is also odd.)This property is sometimes used to categorize Zernike polynomials into even and odd polynomials in terms of their angular dependence. (it is also possible to add another category withl = 0 since it has a special property of no angular dependence.)

(This nomenclature is not used in practice because non-vanishing polynomials have evenl only combined with evenn andoddl combined with oddn, so angularly even polynomials are also radially even polynomials and angularly odd polynomials are also radially odd polynomials such that the attributeangularly is superflous.)

The radial polynomials are also either even or odd, depending on the ordern or the azimuthal indexm:

Rnm(ρ)=(1)nRnm(ρ)=(1)mRnm(ρ).{\displaystyle R_{n}^{m}(\rho )=(-1)^{n}R_{n}^{m}(-\rho )=(-1)^{m}R_{n}^{m}(-\rho ).}

These equalities are easily seen sinceRnm(ρ){\displaystyle R_{n}^{m}(\rho )} with an odd (even)m contains only odd (even) powers toρ (see examples ofRnm(ρ){\displaystyle R_{n}^{m}(\rho )} below).

Theperiodicity of the trigonometric functions results in invariance if rotated by multiples of2π/l{\displaystyle 2\pi /l} radian around the center:

Znl(ρ,φ+2πkl)=Znl(ρ,φ),k=0,±1,±2,.{\displaystyle Z_{n}^{l}\left(\rho ,\varphi +{\tfrac {2\pi k}{l}}\right)=Z_{n}^{l}(\rho ,\varphi ),\qquad k=0,\pm 1,\pm 2,\cdots .}

As eigenfunctions of a differential operator

[edit]

The Zernike polynomials are eigenfunctions of the Zernike differential operator, in modern formulation[5]

L[f]=2f(r)2f2rf{\displaystyle {\begin{aligned}L\left[f\right]=\nabla ^{2}f-({\bf {r}}\cdot \nabla )^{2}f-2{\bf {r}}\cdot \nabla f\end{aligned}}}

self-adjoint over the unit disk, with negative eigenvaluesL[Znm]=n(n+2)Znm{\displaystyle L[Z_{n}^{m}]=-n(n+2)Z_{n}^{m}}. Other self-adjoint differential operators can be constructed for which the Zernike polynomials form a spectrum, for example(1ρ2)Znm=(m2n(n+2))Znm{\displaystyle \nabla \cdot (1-\rho ^{2})\nabla Z_{n}^{m}=\left(m^{2}-n(n+2)\right)Z_{n}^{m}} (relating to rough surfaceBRDFs[6]), which differs from the above by a factorφφ{\displaystyle \partial _{\varphi \varphi }}.

Recurrence relations

[edit]

The Zernike polynomials satisfy the followingrecurrence relation:[7]

Rnm(ρ)+Rn2m(ρ)=ρ[Rn1|m1|(ρ)+Rn1m+1(ρ)] .{\displaystyle {\begin{aligned}R_{n}^{m}(\rho )+R_{n-2}^{m}(\rho )=\rho \left[R_{n-1}^{\left|m-1\right|}(\rho )+R_{n-1}^{m+1}(\rho )\right]{\text{ .}}\end{aligned}}}

From the definition ofRnm{\displaystyle R_{n}^{m}} it can be seen thatRmm(ρ)=ρm{\displaystyle R_{m}^{m}(\rho )=\rho ^{m}} andRm+2m(ρ)=((m+2)ρ2(m+1))ρm{\displaystyle R_{m+2}^{m}(\rho )=((m+2)\rho ^{2}-(m+1))\rho ^{m}}. The following three-term recurrence relation[8][9]then allows to calculate all otherRnm(ρ){\displaystyle R_{n}^{m}(\rho )}:

Rnm(ρ)=2(n1)(2n(n2)ρ2m2n(n2))Rn2m(ρ)n(n+m2)(nm2)Rn4m(ρ)(n+m)(nm)(n2) .{\displaystyle R_{n}^{m}(\rho )={\frac {2(n-1)(2n(n-2)\rho ^{2}-m^{2}-n(n-2))R_{n-2}^{m}(\rho )-n(n+m-2)(n-m-2)R_{n-4}^{m}(\rho )}{(n+m)(n-m)(n-2)}}{\text{ .}}}

The main use of these recurrences is to avoid cancellation of digits that occurs for largen{\displaystyle n} in the accumulation of the oscillatory binomial terms in the power series notation[10].[11]

The above relation is also useful since the derivative ofRnm{\displaystyle R_{n}^{m}} can be calculated from two radial Zernike polynomials of adjacent degree:[8]

ddρRnm(ρ)=(2nm(ρ21)+(nm)(m+n(2ρ21)))Rnm(ρ)(n+m)(nm)Rn2m(ρ)2nρ(ρ21) .{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\rho }}R_{n}^{m}(\rho )={\frac {(2nm(\rho ^{2}-1)+(n-m)(m+n(2\rho ^{2}-1)))R_{n}^{m}(\rho )-(n+m)(n-m)R_{n-2}^{m}(\rho )}{2n\rho (\rho ^{2}-1)}}{\text{ .}}}

Thedifferential equation of the Gaussian Hypergeometric Function is equivalent to

ρ2(ρ21)d2dρ2Rnm(ρ)=[n(n+2)ρ2m2]Rnm(ρ)+ρ(13ρ2)ddρRnm(ρ).{\displaystyle \rho ^{2}(\rho ^{2}-1){\frac {d^{2}}{d\rho ^{2}}}R_{n}^{m}(\rho )=[n(n+2)\rho ^{2}-m^{2}]R_{n}^{m}(\rho )+\rho (1-3\rho ^{2}){\frac {d}{d\rho }}R_{n}^{m}(\rho ).}

Nomenclature

[edit]

Noll's sequential indices

[edit]

Applications often involvelinear algebra, where an integral over a product of Zernike polynomials and some other factor builds matrix elements.To enumerate the rows and columns of these matrices by a single index, a conventional mapping of the two indicesn andm to a single indexj has been introduced by Noll.[12]

(In this section them{\displaystyle m} is the signed upper index ofZ{\displaystyle Z} which may be positive or negative or zero.) The table of this associationZnmZj{\displaystyle Z_{n}^{m}\rightarrow Z_{j}} starts as follows (sequenceA176988 in theOEIS).

j=n(n+1)2+|m|+{0,m>0n{0,1}(mod4);0,m<0n{2,3}(mod4);1,m0n{2,3}(mod4);1,m0n{0,1}(mod4).{\displaystyle j={\frac {n(n+1)}{2}}+|m|+\left\{{\begin{array}{ll}0,&m>0\land n\equiv \{0,1\}{\pmod {4}};\\0,&m<0\land n\equiv \{2,3\}{\pmod {4}};\\1,&m\geq 0\land n\equiv \{2,3\}{\pmod {4}};\\1,&m\leq 0\land n\equiv \{0,1\}{\pmod {4}}.\end{array}}\right.}

n,m0,01,11,−12,02,−22,23,−13,13,−33,3
j12345678910
n,m4,04,24,−24,44,−45,15,−15,35,−35,5
j11121314151617181920

The rule is the following.

OSA/ANSI standard indices

[edit]

OSA[13] andANSI single-index Zernike polynomials using:

j=n(n+2)+l2{\displaystyle j={\frac {n(n+2)+l}{2}}}
n,l0,01,−11,12,−22,02,23,−33,−13,13,3
j0123456789
n,l4,−44,−24,04,24,45,−55,−35,−15,15,3
j10111213141516171819

OSA/ANSI indices can be converted back to standard indices as follows:

n=8j+112,l=2jn(n+2).{\displaystyle n=\left\lfloor {\frac {{\sqrt {8j+1}}-1}{2}}\right\rfloor ,\qquad l=2j-n(n+2).}

Fringe/University of Arizona indices

[edit]

The Fringe indexing scheme is used in commercial optical design software and optical testing in, e.g.,photolithography.[14][15]

j=(1+n+|l|2)22|l|+1sgnl2{\displaystyle j=\left(1+{\frac {n+|l|}{2}}\right)^{2}-2|l|+\left\lfloor {\frac {1-\operatorname {sgn} l}{2}}\right\rfloor }

wheresgnl{\displaystyle \operatorname {sgn} l} is thesign or signum function. The first 20 fringe numbers are listed below.

n,l0,01,11,−12,02,22,−23,13,−14,03,3
j12345678910
n,l3,−34,24,−25,15,−16,04,44,−45,35,−3
j11121314151617181920

Wyant indices

[edit]

James C. Wyant uses the "Fringe" indexing scheme except it starts at 0 instead of 1 (subtract 1).[16] This method is commonly used including interferogram analysis software in Zygo interferometers and the open source software DFTFringe.

Examples

[edit]

Radial polynomials

[edit]

The first few radial polynomials are:

R00(ρ)=1{\displaystyle R_{0}^{0}(\rho )=1\,}
R11(ρ)=ρ{\displaystyle R_{1}^{1}(\rho )=\rho \,}
R20(ρ)=2ρ21{\displaystyle R_{2}^{0}(\rho )=2\rho ^{2}-1\,}
R22(ρ)=ρ2{\displaystyle R_{2}^{2}(\rho )=\rho ^{2}\,}
R31(ρ)=3ρ32ρ{\displaystyle R_{3}^{1}(\rho )=3\rho ^{3}-2\rho \,}
R33(ρ)=ρ3{\displaystyle R_{3}^{3}(\rho )=\rho ^{3}\,}
R40(ρ)=6ρ46ρ2+1{\displaystyle R_{4}^{0}(\rho )=6\rho ^{4}-6\rho ^{2}+1\,}
R42(ρ)=4ρ43ρ2{\displaystyle R_{4}^{2}(\rho )=4\rho ^{4}-3\rho ^{2}\,}
R44(ρ)=ρ4{\displaystyle R_{4}^{4}(\rho )=\rho ^{4}\,}
R51(ρ)=10ρ512ρ3+3ρ{\displaystyle R_{5}^{1}(\rho )=10\rho ^{5}-12\rho ^{3}+3\rho \,}
R53(ρ)=5ρ54ρ3{\displaystyle R_{5}^{3}(\rho )=5\rho ^{5}-4\rho ^{3}\,}
R55(ρ)=ρ5{\displaystyle R_{5}^{5}(\rho )=\rho ^{5}\,}
R60(ρ)=20ρ630ρ4+12ρ21{\displaystyle R_{6}^{0}(\rho )=20\rho ^{6}-30\rho ^{4}+12\rho ^{2}-1\,}
R62(ρ)=15ρ620ρ4+6ρ2{\displaystyle R_{6}^{2}(\rho )=15\rho ^{6}-20\rho ^{4}+6\rho ^{2}\,}
R64(ρ)=6ρ65ρ4{\displaystyle R_{6}^{4}(\rho )=6\rho ^{6}-5\rho ^{4}\,}
R66(ρ)=ρ6.{\displaystyle R_{6}^{6}(\rho )=\rho ^{6}.\,}

Zernike polynomials

[edit]

The first few Zernike modes, at various indices,[4][17][18] are shown below. In this table they are normalized differently than in the remaining sections:02π01[Zj(ρ,ϕ)]2ρdρdϕ=π{\displaystyle \int _{0}^{2\pi }\int _{0}^{1}[Z_{j}(\rho ,\phi )]^{2}\cdot \rho \,d\rho \,d\phi =\pi }, which is equivalent toVar(Z)unit circle=1{\displaystyle \operatorname {Var} (Z)_{\text{unit circle}}=1}.

Znl{\displaystyle Z_{n}^{l}}OSA/ANSI
index
(j{\displaystyle j})
Noll
index
(j{\displaystyle j})
Wyant
index
(j{\displaystyle j})
Fringe/UA
index
(j{\displaystyle j})
Radial
degree
(n{\displaystyle n})
Azimuthal
degree
(l{\displaystyle l})
Zj{\displaystyle Z_{j}}Classical name
Z00{\displaystyle Z_{0}^{0}}0101001{\displaystyle 1}Piston (see,Wigner semicircle distribution)
Z11{\displaystyle Z_{1}^{-1}}13231−12ρsinϕ{\displaystyle 2\rho \sin \phi }Tilt (Y-Tilt, vertical tilt)
Z11{\displaystyle Z_{1}^{1}}22121+12ρcosϕ{\displaystyle 2\rho \cos \phi }Tilt (X-Tilt, horizontal tilt)
Z22{\displaystyle Z_{2}^{-2}}35562−26ρ2sin2ϕ{\displaystyle {\sqrt {6}}\rho ^{2}\sin 2\phi }Oblique astigmatism
Z20{\displaystyle Z_{2}^{0}}4434203(2ρ21){\displaystyle {\sqrt {3}}(2\rho ^{2}-1)}Defocus (longitudinal position)
Z22{\displaystyle Z_{2}^{2}}56452+26ρ2cos2ϕ{\displaystyle {\sqrt {6}}\rho ^{2}\cos 2\phi }Vertical astigmatism
Z33{\displaystyle Z_{3}^{-3}}6910113−38ρ3sin3ϕ{\displaystyle {\sqrt {8}}\rho ^{3}\sin 3\phi }Vertical trefoil
Z31{\displaystyle Z_{3}^{-1}}77783−18(3ρ32ρ)sinϕ{\displaystyle {\sqrt {8}}(3\rho ^{3}-2\rho )\sin \phi }Vertical coma
Z31{\displaystyle Z_{3}^{1}}88673+18(3ρ32ρ)cosϕ{\displaystyle {\sqrt {8}}(3\rho ^{3}-2\rho )\cos \phi }Horizontal coma
Z33{\displaystyle Z_{3}^{3}}9109103+38ρ3cos3ϕ{\displaystyle {\sqrt {8}}\rho ^{3}\cos 3\phi }Oblique trefoil
Z44{\displaystyle Z_{4}^{-4}}101517184−410ρ4sin4ϕ{\displaystyle {\sqrt {10}}\rho ^{4}\sin 4\phi }Oblique quadrafoil
Z42{\displaystyle Z_{4}^{-2}}111312134−210(4ρ43ρ2)sin2ϕ{\displaystyle {\sqrt {10}}(4\rho ^{4}-3\rho ^{2})\sin 2\phi }Oblique secondary astigmatism
Z40{\displaystyle Z_{4}^{0}}121189405(6ρ46ρ2+1){\displaystyle {\sqrt {5}}(6\rho ^{4}-6\rho ^{2}+1)}Primary spherical
Z42{\displaystyle Z_{4}^{2}}131211124+210(4ρ43ρ2)cos2ϕ{\displaystyle {\sqrt {10}}(4\rho ^{4}-3\rho ^{2})\cos 2\phi }Vertical secondary astigmatism
Z44{\displaystyle Z_{4}^{4}}141416174+410ρ4cos4ϕ{\displaystyle {\sqrt {10}}\rho ^{4}\cos 4\phi }Vertical quadrafoil

Applications

[edit]
Further information:Optical_aberration § Zernike_model_of_aberrations
Result of the first 21 Zernike polynomials (as above) introduced as aberrations on a flat-top beam. The beam is imaged by a lens, effecting a Fourier transform, whose intensity is represented in this picture

The functions are a basis defined over the circular support area, typically the pupil planes in classical optical imaging at visible and infrared wavelengths through systems of lenses and mirrors of finite diameter. Their advantages are the simple analytical properties inherited from the simplicity of the radial functions and the factorization in radial and azimuthal functions; this leads, for example, to closed-form expressions of the two-dimensionalFourier transform in terms of Bessel functions.[19][20] Their disadvantage, in particular if highn are involved, is the unequal distribution of nodal lines over the unit disk, which introduces ringing effects near the perimeterρ1{\displaystyle \rho \approx 1}, which often leads attempts to define otherorthogonal functions over the circular disk.[21][22][23]

In precision optical manufacturing, Zernike polynomials are used to characterize higher-order errors observed in interferometric analyses. In wavefront slope sensors like theShack-Hartmann, Zernike coefficients of the wavefront can be obtained by fitting measured slopes with Zernike polynomial derivatives averaged over the sampling subapertures.[24] Inoptometry andophthalmology, Zernike polynomials are used to describewavefront aberrations of thecornea orlens from an ideal spherical shape, which result inrefraction errors. They are also commonly used inadaptive optics, where they can be used to characterizeatmospheric distortion. Obvious applications for this are IR or visual astronomy andsatellite imagery.

Another application of the Zernike polynomials is found in the Extended Nijboer–Zernike theory ofdiffraction and aberrations.

Zernike polynomials are widely used as basis functions ofimage moments. Since Zernike polynomials areorthogonal to each other, Zernike moments can represent properties of an image with no redundancy or overlap of information between the moments. Although Zernike moments are significantly dependent on thescaling and thetranslation of the object in aregion of interest (ROI), theirmagnitudes are independent of the rotation angle of the object.[25] Thus, they can be utilized to extractfeatures from images that describe the shape characteristics of an object. For instance, Zernike moments are utilized as shape descriptors to classify benign and malignantbreast masses[26] or the surface of vibrating disks.[27] Zernike Moments also have been used to quantify shape of osteosarcoma cancer cell lines in single cell level.[28] Moreover, Zernike moments have been used for early detection of Alzheimer's disease by extracting discriminative information from the MR images of Alzheimer's disease,mild cognitive impairment, and healthy groups.[29]

Higher dimensions

[edit]

The concept translates to higher dimensionsD if multinomialsx1ix2jxDk{\displaystyle x_{1}^{i}x_{2}^{j}\cdots x_{D}^{k}} in Cartesian coordinates are converted tohyperspherical coordinates,ρs,sD{\displaystyle \rho ^{s},s\leq D}, multiplied by a product of Jacobi polynomials of the angular variables. InD=3{\displaystyle D=3} dimensions, the angular variables arespherical harmonics, for example. Linear combinations of the powersρs{\displaystyle \rho ^{s}} define an orthogonal basisRn(l)(ρ){\displaystyle R_{n}^{(l)}(\rho )} satisfying

01ρD1Rn(l)(ρ)Rn(l)(ρ)dρ=δn,n{\displaystyle \int _{0}^{1}\rho ^{D-1}R_{n}^{(l)}(\rho )R_{n'}^{(l)}(\rho )d\rho =\delta _{n,n'}}.

(Note that a factor2n+D{\displaystyle {\sqrt {2n+D}}} is absorbed in the definition ofR here, whereas inD=2{\displaystyle D=2} the normalization is chosen slightly differently. This is largely a matter of taste, depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if theorthogonalization is involved.) The explicit representation is[3]

Rn(l)(ρ)=2n+Ds=0nl2(1)s(nl2s)(ns1+D2nl2)ρn2s=(1)nl22n+Ds=0nl2(1)s(nl2s)(s1+n+l+D2nl2)ρ2s+l=(1)nl22n+D(n+l+D21nl2)ρl 2F1(nl2,n+l+D2;l+D2;ρ2){\displaystyle {\begin{aligned}R_{n}^{(l)}(\rho )&={\sqrt {2n+D}}\sum _{s=0}^{\tfrac {n-l}{2}}(-1)^{s}{{\tfrac {n-l}{2}} \choose s}{n-s-1+{\tfrac {D}{2}} \choose {\tfrac {n-l}{2}}}\rho ^{n-2s}\\&=(-1)^{\tfrac {n-l}{2}}{\sqrt {2n+D}}\sum _{s=0}^{\tfrac {n-l}{2}}(-1)^{s}{{\tfrac {n-l}{2}} \choose s}{s-1+{\tfrac {n+l+D}{2}} \choose {\tfrac {n-l}{2}}}\rho ^{2s+l}\\&=(-1)^{\tfrac {n-l}{2}}{\sqrt {2n+D}}{{\tfrac {n+l+D}{2}}-1 \choose {\tfrac {n-l}{2}}}\rho ^{l}\ {}_{2}F_{1}\left(-{\tfrac {n-l}{2}},{\tfrac {n+l+D}{2}};l+{\tfrac {D}{2}};\rho ^{2}\right)\end{aligned}}}

for evennl0{\displaystyle n-l\geq 0}, else identical to zero, with special caseRn(n)(ρ)=2n+Dρn.{\displaystyle R_{n}^{(n)}(\rho )={\sqrt {2n+D}}\rho ^{n}.}

Its differential equation for the Gaussian Hypergeometric Function is equivalent to

ρ2(ρ21)d2dρ2Rn(l)(ρ)=[nρ2(n+D)l(D2+l)]Rn(l)(ρ)+ρ[D1(D+1)ρ2]ddρRn(l)(ρ).{\displaystyle \rho ^{2}(\rho ^{2}-1){\frac {d^{2}}{d\rho ^{2}}}R_{n}^{(l)}(\rho )=\left[n\rho ^{2}(n+D)-l(D-2+l)\right]R_{n}^{(l)}(\rho )+\rho \left[D-1-(D+1)\rho ^{2}\right]{\frac {d}{d\rho }}R_{n}^{(l)}(\rho ).}

Kintner's recurrence for fixedl{\displaystyle l} and variablen±2{\displaystyle n\pm 2}quoted forD=2{\displaystyle D=2} above is in the general form[30]

(1+nl2)(1nD2)n+l+D2Rn+2(l)(ρ)2(n+2)+D=nl2(1+n+D2)(1n+l+D2)Rn2(l)(ρ)2(n2)+D+(n+D2)[(1+n+D2)(1nD2)(1ρ2)+12(nl)(D+n+l)+l+D21]Rn(l)(ρ)2n+D.{\displaystyle {\begin{aligned}&-(1+{\frac {n-l}{2}})(1-n-{\frac {D}{2}}){\frac {n+l+D}{2}}{\frac {R_{n+2}^{(l)}(\rho )}{\sqrt {2(n+2)+D}}}\\=&{\frac {n-l}{2}}(1+n+{\frac {D}{2}})(1-{\frac {n+l+D}{2}}){\frac {R_{n-2}^{(l)}(\rho )}{\sqrt {2(n-2)+D}}}\\&+(n+{\frac {D}{2}})\left[(1+n+{\frac {D}{2}})(1-n-{\frac {D}{2}})(1-\rho ^{2})+{\frac {1}{2}}(n-l)(D+n+l)+l+{\frac {D}{2}}-1\right]{\frac {R_{n}^{(l)}(\rho )}{\sqrt {2n+D}}}.\end{aligned}}}

ForD=3{\displaystyle D=3} this was proposed by Deng and Gwo.[31]

For fixedn{\displaystyle n} and variablel±2{\displaystyle l\pm 2} the recurrence is[32]

(l+D21)[(l+D2)(l2+D2)12(l2+lD+Dn+D2/2+n22lD)r2]Rn(l)(r)=(l+D2)(n+l+D21)(1+nl2)r2Rn(l2)(r)(nl2)(n+l+D2)(l2+D2)r2Rn(l+2)(r).{\displaystyle {\begin{aligned}&(l+{\frac {D}{2}}-1)\left[(l+{\frac {D}{2}})(l-2+{\frac {D}{2}})-{\frac {1}{2}}(l^{2}+lD+Dn+D^{2}/2+n^{2}-2l-D)r^{2}\right]R_{n}^{(l)}(r)\\&=-(l+{\frac {D}{2}})({\frac {n+l+D}{2}}-1)(1+{\frac {n-l}{2}})r^{2}R_{n}^{(l-2)}(r)-({\frac {n-l}{2}})({\frac {n+l+D}{2}})(l-2+{\frac {D}{2}})r^{2}R_{n}^{(l+2)}(r).\end{aligned}}}

The case forD=2{\displaystyle D=2} was published by Chong et al.[11]

See also

[edit]

References

[edit]
  1. ^Zernike, F. (1934). "Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode".Physica.1 (8):689–704.Bibcode:1934Phy.....1..689Z.doi:10.1016/S0031-8914(34)80259-5.
  2. ^Born, Max &Wolf, Emil (1999).Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.). Cambridge, UK: Cambridge University Press. p. 986.ISBN 978-0-521-64222-4. (seealso at Google Books)
  3. ^abMathar, R. J. (2009). "Zernike Basis to Cartesian Transformations".Serbian Astronomical Journal.179 (179):107–120.arXiv:0809.2368.Bibcode:2009SerAJ.179..107M.doi:10.2298/SAJ0979107M.S2CID 115159231.
  4. ^abLakshminarayanan, V.; Fleck, Andre (2011). "Zernike polynomials: a guide".J. Mod. Opt.58 (7):545–561.Bibcode:2011JMOp...58..545L.doi:10.1080/09500340.2011.554896.S2CID 120905947.
  5. ^Pogosyan, George S.; Salto-Alegre, Cristina; Wolf, Kurt Bernardo; Yakhno, Alexander (2017). "Quantum superintegrable Zernike system".J. Math. Phys.58 (7) 072101.arXiv:1702.08570.Bibcode:2017JMP....58g2101P.doi:10.1063/1.4990794.
  6. ^"A Unitary BRDF for Surfaces with Gaussian Deviations".GitHub.
  7. ^Honarvar Shakibaei, Barmak (2013). "Recursive formula to compute Zernike radial polynomials".Opt. Lett.38 (14):2487–2489.Bibcode:2013OptL...38.2487H.doi:10.1364/OL.38.002487.PMID 23939089.
  8. ^abKintner, E. C. (1976). "On the mathematical properties of the Zernike Polynomials".Opt. Acta.23 (8):679–680.Bibcode:1976AcOpt..23..679K.doi:10.1080/713819334.
  9. ^Prata Jr, A.; Rusch, W. V. T. (1989). "Algorithm for computation of Zernike polynomials expansion coefficients".Appl. Opt.28 (4):749–54.Bibcode:1989ApOpt..28..749P.doi:10.1364/AO.28.000749.PMID 20548554.
  10. ^Houdayer, Jérôme; Koehl, Patrice (2022)."Stable evaluation of 3D Zernike moments for surface meshes".Algorithms.25 (11): 406.doi:10.3390/a15110406.
  11. ^abChong, Chee-Way; Raveendran, P.; Mukundan, R. (2003). "A comparative analysis of algorithms for fast computation of Zernike moments".Pattern Recog.35 (3):731–742.Bibcode:2003PatRe..36..731C.doi:10.1016/S0031-3203(02)00091-2.
  12. ^Noll, R. J. (1976)."Zernike polynomials and atmospheric turbulence"(PDF).J. Opt. Soc. Am.66 (3): 207.Bibcode:1976JOSA...66..207N.doi:10.1364/JOSA.66.000207.
  13. ^Thibos, L. N.; Applegate, R. A.; Schwiegerling, J. T.; Webb, R. (2002). "Standards for reporting the optical aberrations of eyes".Journal of Refractive Surgery.18 (5): S652-60.doi:10.3928/1081-597X-20020901-30.PMID 12361175.
  14. ^Loomis, J., "A Computer Program for Analysis of Interferometric Data," Optical Interferograms, Reduction and Interpretation, ASTM STP 666, A. H. Guenther and D. H. Liebenberg, Eds., American Society for Testing and Materials, 1978, pp. 71–86.
  15. ^Genberg, V. L.; Michels, G. J.; Doyle, K. B. (2002). "Orthogonality of Zernike polynomials".Optomechanical design and Engineering 2002. Proc SPIE. Vol. 4771. pp. 276–286.doi:10.1117/12.482169.
  16. ^Eric P. Goodwin; James C. Wyant (2006).Field Guide to Interferometric Optical Testing. p. 25.ISBN 0-8194-6510-0.
  17. ^Niu, Kuo; Tian, Chao (2022)."Zernike polynomials and their applications".J. Opt.24 (12).Bibcode:2022JOpt...24l3001N.doi:10.1088/2040-8986/ac9e08.
  18. ^McAlinden, Colm; McCartney, Mark; Moore, Jonathan (2011). "Mathematics of Zernike polynomials: a review".Clin. & Exp. Opthal.39 (8):725–846.doi:10.1111/j.1442-9071.2011.02562.x.
  19. ^Tatulli, E. (2013). "Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures".J. Opt. Soc. Am. A.30 (4):726–32.arXiv:1302.7106.Bibcode:2013JOSAA..30..726T.doi:10.1364/JOSAA.30.000726.PMID 23595334.S2CID 23491106.
  20. ^Janssen, A. J. E. M. (2011)."New analytic results for the Zernike Circle Polynomials from a basic result in the Nijboer-Zernike diffraction theory".Journal of the European Optical Society: Rapid Publications.6 11028.Bibcode:2011JEOS....6E1028J.doi:10.2971/jeos.2011.11028.
  21. ^Barakat, Richard (1980). "Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials".J. Opt. Soc. Am.70 (6):739–742.Bibcode:1980JOSA...70..739B.doi:10.1364/JOSA.70.000739.
  22. ^Janssen, A. J. E. M. (2011). "A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory".arXiv:1110.2369 [math-ph].
  23. ^Mathar, R. J. (2018). "Orthogonal basis function over the unit circle with the minimax property".arXiv:1802.09518 [math.NA].
  24. ^Akondi, Vyas; Dubra, Alfredo (22 June 2020)."Average gradient of Zernike polynomials over polygons".Optics Express.28 (13):18876–18886.Bibcode:2020OExpr..2818876A.doi:10.1364/OE.393223.ISSN 1094-4087.PMC 7340383.PMID 32672177.
  25. ^Tahmasbi, A. (2010).An Effective Breast Mass Diagnosis System using Zernike Moments. 17th Iranian Conf. on Biomedical Engineering (ICBME'2010).Isfahan,Iran:IEEE. pp. 1–4.doi:10.1109/ICBME.2010.5704941.
  26. ^Tahmasbi, A.; Saki, F.; Shokouhi, S.B. (2011). "Classification of Benign and Malignant Masses Based on Zernike Moments".Computers in Biology and Medicine.41 (8):726–735.doi:10.1016/j.compbiomed.2011.06.009.PMID 21722886.
  27. ^Rdzanek, W. P. (2018). "Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials".J. Sound Vib.434:91–125.Bibcode:2018JSV...434...92R.doi:10.1016/j.jsv.2018.07.035.S2CID 125512636.
  28. ^Alizadeh, Elaheh; Lyons, Samanthe M; Castle, Jordan M; Prasad, Ashok (2016). "Measuring systematic changes in invasive cancer cell shape using Zernike moments".Integrative Biology.8 (11):1183–1193.doi:10.1039/C6IB00100A.PMID 27735002.
  29. ^Gorji, H. T., and J. Haddadnia. "A novel method for early diagnosis of Alzheimer's disease based on pseudo Zernike moment from structural MRI." Neuroscience 305 (2015): 361–371.
  30. ^Mathar, Richard J. (2025). "Third order Newton's method for Zernike Polynomial zeros".arXiv:0705.1329 [math.NA].
  31. ^Deng, An-Wen; Gwo, Chih-Ying (2020).A stable algorithm computing high-order 3D Zernike moments and shape reconstructions. ICDSP 2020. pp. 38–42.doi:10.1145/3408127.3408130.
  32. ^Mathar, Richard J. (2025). "Simulation of Time-dependent Karhunen-Loeve Phase Screens: an Ergodic Approach".arXiv:2510.12861 [astro-ph.IM].

External links

[edit]
Wikimedia Commons has media related toZernike polynomials.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Zernike_polynomials&oldid=1338816467"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp