Inscience andengineering, theweight of an object is a quantity associated with thegravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition.[1][2][3]
Weight | |
---|---|
![]() A diagram explaining the mass and weight | |
Common symbols | |
SI unit | newton (N) |
Other units | pound-force (lbf) |
InSI base units | kg⋅m⋅s−2 |
Extensive? | Yes |
Intensive? | No |
Conserved? | No |
Derivations from other quantities | |
Dimension |
Some standard textbooks[4] define weight as avector quantity, thegravitational force acting on the object. Others[5][6] define weight as a scalar quantity, the magnitude of the gravitational force. Yet others[7] define it as the magnitude of thereaction force exerted on a body by mechanisms that counteract the effects of gravity: the weight is the quantity that is measured by, for example, a spring scale. Thus, in a state offree fall, the weight would be zero. In this sense of weight, terrestrial objects can be weightless: so if one ignoresair resistance, one could say the legendary apple falling from the tree[citation needed], on its way to meet the ground nearIsaac Newton, was weightless.
Theunit of measurement for weight is that offorce, which in theInternational System of Units (SI) is thenewton.[1] For example, an object with a mass of one kilogram has a weight of about 9.8 newtons on the surface of the Earth, and about one-sixth as much on theMoon. Although weight and mass are scientifically distinct quantities, the terms are often confused with each other in everyday use (e.g. comparing and converting force weight in pounds to mass in kilograms and vice versa).[8]
Further complications in elucidating the various concepts of weight have to do with thetheory of relativity according to which gravity is modeled as a consequence of thecurvature of spacetime. In the teaching community, a considerable debate has existed for over half a century on how to define weight for their students. The current situation is that a multiple set of concepts co-exist and find use in their various contexts.[2]
History
editDiscussion of the concepts of heaviness (weight) and lightness (levity) date back to theancient Greek philosophers. These were typically viewed as inherent properties of objects.Plato described weight as the natural tendency of objects to seek their kin. ToAristotle, weight and levity represented the tendency to restore the natural order of the basic elements: air, earth, fire and water. He ascribed absolute weight to earth and absolute levity to fire.Archimedes saw weight as a quality opposed tobuoyancy, with the conflict between the two determining if an object sinks or floats. The first operational definition of weight was given byEuclid, who defined weight as: "the heaviness or lightness of one thing, compared to another, as measured by a balance."[2] Operational balances (rather than definitions) had, however, been around much longer.[9]
According to Aristotle, weight was the direct cause of the falling motion of an object, the speed of the falling object was supposed to be directly proportionate to the weight of the object. As medieval scholars discovered that in practice the speed of a falling object increased with time, this prompted a change to the concept of weight to maintain this cause-effect relationship. Weight was split into a "still weight" orpondus, which remained constant, and the actual gravity orgravitas, which changed as the object fell. The concept ofgravitas was eventually replaced byJean Buridan'simpetus, a precursor tomomentum.[2]
The rise of theCopernican view of the world led to the resurgence of the Platonic idea that like objects attract but in the context of heavenly bodies. In the 17th century,Galileo made significant advances in the concept of weight. He proposed a way to measure the difference between the weight of a moving object and an object at rest. Ultimately, he concluded weight was proportionate to the amount of matter of an object, not the speed of motion as supposed by the Aristotelean view of physics.[2]
Newton
editThe introduction ofNewton's laws of motion and the development ofNewton's law of universal gravitation led to considerable further development of the concept of weight. Weight became fundamentally separate frommass. Mass was identified as a fundamental property of objects connected to theirinertia, while weight became identified with the force of gravity on an object and therefore dependent on the context of the object. In particular, Newton considered weight to be relative to another object causing the gravitational pull, e.g. the weight of the Earth towards the Sun.[2]
Newton considered time and space to be absolute. This allowed him to consider concepts as true position and true velocity.[clarification needed] Newton also recognized that weight as measured by the action of weighing was affected by environmental factors such as buoyancy. He considered this a false weight induced by imperfect measurement conditions, for which he introduced the termapparent weight as compared to thetrue weight defined by gravity.[2]
Although Newtonian physics made a clear distinction between weight and mass, the term weight continued to be commonly used when people meant mass. This led the 3rdGeneral Conference on Weights and Measures (CGPM) of 1901 to officially declare "The wordweight denotes a quantity of the same nature as aforce: the weight of a body is the product of its mass and the acceleration due to gravity", thus distinguishing it from mass for official usage.
Relativity
editIn the 20th century, the Newtonian concepts of absolute time and space were challenged by relativity. Einstein'sequivalence principle put all observers, moving or accelerating, on the same footing. This led to an ambiguity as to what exactly is meant by the force of gravity and weight. A scale in an accelerating elevator cannot be distinguished from a scale in a gravitational field. Gravitational force and weight thereby became essentially frame-dependent quantities. This prompted the abandonment of the concept as superfluous in the fundamental sciences such as physics and chemistry. Nonetheless, the concept remained important in the teaching of physics. The ambiguities introduced by relativity led, starting in the 1960s, to considerable debate in the teaching community as how to define weight for their students, choosing between a nominal definition of weight as the force due to gravity or an operational definition defined by the act of weighing.[2]
Definitions
editThis articlemay containexcessive orirrelevant examples. Please helpimprove the article by adding descriptive text and removingless pertinent examples.(October 2023) |
Several definitions exist forweight, not all of which are equivalent.[3][10][11][12]
Gravitational definition
editThe most common definition of weight found in introductory physics textbooks defines weight as the force exerted on a body by gravity.[1][12] This is often expressed in the formulaW =mg, whereW is the weight,m the mass of the object, andggravitational acceleration.
In 1901, the 3rdGeneral Conference on Weights and Measures (CGPM) established this as their official definition ofweight:
The wordweight denotes a quantity of the same nature[Note 1] as aforce: the weight of a body is the product of its mass and the acceleration due to gravity.
This resolution defines weight as a vector, since force is a vector quantity. However, some textbooks also take weight to be a scalar by defining:
The weightW of a body is equal to the magnitudeFg of the gravitational force on the body.[16]
The gravitational acceleration varies from place to place. Sometimes, it is simply taken to have astandard value of9.80665 m/s2, which gives thestandard weight.[14]
The force whose magnitude is equal tomg newtons is also known as them kilogram weight (which term is abbreviated tokg-wt)[17]
Operational definition
editIn the operational definition, the weight of an object is theforce measured by the operation of weighing it, which isthe force it exerts on its support.[10] SinceW is the downward force on the body by the centre of Earth and there is no acceleration in the body, there exists an opposite and equal force by the support on the body. It is equal to the force exerted by the body on its support because action and reaction have same numerical value and opposite direction. This can make a considerable difference, depending on the details; for example, an object infree fall exerts little if any force on its support, a situation that is commonly referred to asweightlessness. However, being in free fall does not affect the weight according to the gravitational definition. Therefore, the operational definition is sometimes refined by requiring that the object be at rest.[citation needed] However, this raises the issue of defining "at rest" (usually being at rest with respect to the Earth is implied by usingstandard gravity).[citation needed] In the operational definition, the weight of an object at rest on the surface of the Earth is lessened by the effect of the centrifugal force from the Earth's rotation.
The operational definition, as usually given, does not explicitly exclude the effects ofbuoyancy, which reduces the measured weight of an object when it is immersed in a fluid such as air or water. As a result, a floatingballoon or an object floating in water might be said to have zero weight.
ISO definition
editIn theISO International standard ISO 80000-4:2006,[18] describing the basic physical quantities and units in mechanics as a part of the International standardISO/IEC 80000, the definition ofweight is given as:
Definition
- ,
- wherem is mass andg is local acceleration of free fall.
Remarks
- When the reference frame is Earth, this quantity comprises not only the local gravitational force, but also the local centrifugal force due to the rotation of the Earth, a force which varies with latitude.
- The effect of atmospheric buoyancy is excluded in the weight.
- In common parlance, the name "weight" continues to be used where "mass" is meant, but this practice is deprecated.
— ISO 80000-4 (2006)
The definition is dependent on the chosenframe of reference. When the chosen frame is co-moving with the object in question then this definition precisely agrees with the operational definition.[11] If the specified frame is the surface of the Earth, the weight according to the ISO and gravitational definitions differ only by the centrifugal effects due to the rotation of the Earth.
Apparent weight
editIn many real world situations the act of weighing may produce a result that differs from the ideal value provided by the definition used. This is usually referred to as the apparent weight of the object. A common example of this is the effect ofbuoyancy, when an object is immersed in afluid the displacement of the fluid will cause an upward force on the object, making it appear lighter when weighed on a scale.[19] The apparent weight may be similarly affected bylevitation and mechanical suspension. When the gravitational definition of weight is used, the operational weight measured by an accelerating scale is often also referred to as the apparent weight.[20]
Mass
editIn modern scientific usage, weight andmass are fundamentally different quantities: mass is anintrinsic property ofmatter, whereas weight is aforce that results from the action ofgravity on matter: it measures how strongly the force of gravity pulls on that matter. However, in most practical everyday situations the word "weight" is used when, strictly, "mass" is meant.[8][21] For example, most people would say that an object "weighs one kilogram", even though the kilogram is a unit of mass.
The distinction between mass and weight is unimportant for many practical purposes because the strength of gravity does not vary too much on the surface of the Earth. In a uniform gravitational field, the gravitational force exerted on an object (its weight) isdirectly proportional to its mass. For example, object A weighs 10 times as much as object B, so therefore the mass of object A is 10 times greater than that of object B. This means that an object's mass can be measured indirectly by its weight, and so, for everyday purposes,weighing (using aweighing scale) is an entirely acceptable way of measuring mass. Similarly, abalance measures mass indirectly by comparing the weight of the measured item to that of an object(s) of known mass. Since the measured item and the comparison mass are in virtually the same location, so experiencing the samegravitational field, the effect of varying gravity does not affect the comparison or the resulting measurement.
The Earth'sgravitational field is not uniform but can vary by as much as 0.5%[22] at different locations on Earth (seeEarth's gravity). These variations alter the relationship between weight and mass, and must be taken into account in high-precision weight measurements that are intended to indirectly measure mass.Spring scales, which measure local weight, must be calibrated at the location at which the objects will be used to show this standard weight, to be legal for commerce.[citation needed]
This table shows the variation of acceleration due to gravity (and hence the variation of weight) at various locations on the Earth's surface.[23]
Location | Latitude | m/s2 | Absolute difference from equator | Percentage difference from equator |
---|---|---|---|---|
Equator | 0° | 9.7803 | 0.0000 | 0% |
Sydney | 33°52′ S | 9.7968 | 0.0165 | 0.17% |
Aberdeen | 57°9′ N | 9.8168 | 0.0365 | 0.37% |
North Pole | 90° N | 9.8322 | 0.0519 | 0.53% |
The historical use of "weight" for "mass" also persists in some scientific terminology – for example, thechemical terms "atomic weight", "molecular weight", and "formula weight", can still be found rather than the preferred "atomic mass", etc.
In a different gravitational field, for example, on the surface of theMoon, an object can have a significantly different weight than on Earth. The gravity on the surface of the Moon is only about one-sixth as strong as on the surface of the Earth. A one-kilogram mass is still a one-kilogram mass (as mass is an intrinsic property of the object) but the downward force due to gravity, and therefore its weight, is only one-sixth of what the object would have on Earth. So a man of mass 180pounds weighs only about 30pounds-force when visiting the Moon.
SI units
editIn most modern scientific work, physical quantities are measured inSI units. The SI unit of weight is the same as that of force: thenewton (N) – a derived unit which can also be expressed inSI base units as kg⋅m/s2 (kilograms times metres per second squared).[21]
In commercial and everyday use, the term "weight" is usually used to mean mass, and the verb "to weigh" means "to determine the mass of" or "to have a mass of". Used in this sense, the proper SI unit is thekilogram (kg).[21]
Pound and other non-SI units
editInUnited States customary units, the pound can be either a unit of force or a unit of mass.[24] Related units used in some distinct, separate subsystems of units include thepoundal and theslug. The poundal is defined as the force necessary to accelerate an object of one-poundmass at 1 ft/s2, and is equivalent to about 1/32.2 of a pound-force. The slug is defined as the amount of mass that accelerates at 1 ft/s2 when one pound-force is exerted on it, and is equivalent to about 32.2 pounds (mass).
Thekilogram-force is a non-SI unit of force, defined as the force exerted by a one-kilogram mass in standard Earth gravity (equal to 9.80665 newtons exactly). Thedyne is thecgs unit of force and is not a part of SI, while weights measured in the cgs unit of mass, the gram, remain a part of SI.
Sensation
editThe sensation of weight is caused by the force exerted by fluids in thevestibular system, a three-dimensional set of tubes in the innerear.[dubious –discuss] It is actually the sensation ofg-force, regardless of whether this is due to being stationary in the presence of gravity, or, if the person is in motion, the result of any other forces acting on the body such as in the case of acceleration or deceleration of a lift, or centrifugal forces when turning sharply.
Measuring
editWeight is commonly measured using one of two methods. Aspring scale orhydraulic or pneumatic scale measures local weight, the localforce ofgravity on the object (strictlyapparent weight force). Since the local force of gravity can vary by up to 0.5% at different locations, spring scales will measure slightly different weights for the same object (the same mass) at different locations. To standardize weights, scales are always calibrated to read the weight an object would have at a nominalstandard gravity of 9.80665 m/s2 (approx. 32.174 ft/s2). However, this calibration is done at the factory. When the scale is moved to another location on Earth, the force of gravity will be different, causing a slight error. So to be highly accurate and legal for commerce,spring scales must be re-calibrated at the location at which they will be used.
Abalance on the other hand, compares the weight of an unknown object in one scale pan to the weight of standard masses in the other, using alever mechanism – a lever-balance. The standard masses are often referred to, non-technically, as "weights". Since any variations in gravity will act equally on the unknown and the known weights, a lever-balance will indicate the same value at any location on Earth. Therefore, balance "weights" are usually calibrated and marked inmass units, so the lever-balance measures mass by comparing the Earth's attraction on the unknown object and standard masses in the scale pans. In the absence of a gravitational field, away from planetary bodies (e.g. space), a lever-balance would not work, but on the Moon, for example, it would give the same reading as on Earth. Some balances are marked in weight units, but since the weights are calibrated at the factory for standard gravity, the balance will measure standard weight, i.e. what the object would weigh at standard gravity, not the actual local force of gravity on the object.
If the actual force of gravity on the object is needed, this can be calculated by multiplying the mass measured by the balance by the acceleration due to gravity – either standard gravity (for everyday work) or the precise local gravity (for precision work). Tables of the gravitational acceleration at different locations can be found on the web.
Gross weight is a term that is generally found in commerce or trade applications, and refers to the total weight of a product and its packaging. Conversely,net weight refers to the weight of the product alone, discounting the weight of its container or packaging; andtare weight is the weight of the packaging alone.
Relative weights on the Earth and other celestial bodies
editThe table below shows comparativegravitational accelerations at the surface of the Sun, the Moon, and at each of the planets in theSolar System. The "surface" is taken to mean the cloud tops of thegiant planets (Jupiter, Saturn, Uranus, and Neptune). For the Sun, the surface is taken to mean thephotosphere. The values in the table have not been de-rated for the centrifugal effect of planet rotation (and cloud-top wind speeds for the giant planets) and therefore, generally speaking, are similar to the actual gravity that would be experienced near the poles.
Body | Multiple of Earth gravity | Surface gravity m/s2 |
---|---|---|
Sun | 27.90 | 274.1 |
Mercury | 0.3770 | 3.703 |
Venus | 0.9032 | 8.872 |
Earth | 1 (by definition) | 9.8226[25] |
Moon | 0.1655 | 1.625 |
Mars | 0.3895 | 3.728 |
Jupiter | 2.640 | 25.93 |
Saturn | 1.139 | 11.19 |
Uranus | 0.917 | 9.01 |
Neptune | 1.148 | 11.28 |
See also
edit- Human body weight – Person's mass or weight
- Specific weight – Weight per unit volume of a material
- Tare weight
- weight – Unit of weight the English unit
- List of weights
Notes
edit- ^The phrase "quantity of the same nature" is a literal translation of theFrench phrasegrandeur de la même nature. Although this is an authorized translation, VIM 3 of theInternational Bureau of Weights and Measures recommends translatinggrandeurs de même nature asquantities of the same kind.[13]
References
edit- ^abcRichard C. Morrison (1999). "Weight and gravity - the need for consistent definitions".The Physics Teacher.37 (1): 51.Bibcode:1999PhTea..37...51M.doi:10.1119/1.880152.
- ^abcdefghIgal Galili (2001). "Weight versus gravitational force: historical and educational perspectives".International Journal of Science Education.23 (10): 1073.Bibcode:2001IJSEd..23.1073G.doi:10.1080/09500690110038585.S2CID 11110675.
- ^abGat, Uri (1988)."The weight of mass and the mess of weight". In Richard Alan Strehlow (ed.).Standardization of Technical Terminology: Principles and Practice –second volume.ASTM International. pp. 45–48.ISBN 978-0-8031-1183-7.
- ^Knight, Randall D. (2004).Physics for Scientists and Engineers: a Strategic Approach. San Francisco, US: Addison–Wesley. pp. 100–101.ISBN 0-8053-8960-1.
- ^Bauer, Wolfgang; Westfall, Gary D. (2011).University Physics with Modern Physics. New York: McGraw Hill. p. 103.ISBN 978-0-07-336794-1.
- ^Serway, Raymond A.; Jewett, John W. (2008).Physics for Scientists and Engineers with Modern Physics. US: Thompson. p. 106.ISBN 978-0-495-11245-7.
- ^Hewitt, Paul G. (2001).Conceptual Physics. US: Addison–Wesley. pp. 159.ISBN 0-321-05202-1.
- ^abThe National Standard of Canada, CAN/CSA-Z234.1-89 Canadian Metric Practice Guide, January 1989:
- 5.7.3 Considerable confusion exists in the use of the term "weight". In commercial and everyday use, the term "weight" nearly always means mass. In science and technology "weight" has primarily meant a force due to gravity. In scientific and technical work, the term "weight" should be replaced by the term "mass" or "force", depending on the application.
- 5.7.4 The use of the verb "to weigh" meaning "to determine the mass of", e.g., "I weighed this object and determined its mass to be 5 kg," is correct.
- ^http://www.averyweigh-tronix.com/museumArchived 2013-02-28 at theWayback Machine accessed 29 March 2013.
- ^abAllen L. King (1963). "Weight and weightlessness".American Journal of Physics.30 (5): 387.Bibcode:1962AmJPh..30..387K.doi:10.1119/1.1942032.
- ^abA. P. French (1995). "On weightlessness".American Journal of Physics.63 (2):105–106.Bibcode:1995AmJPh..63..105F.doi:10.1119/1.17990.
- ^abGalili, I.; Lehavi, Y. (2003)."The importance of weightlessness and tides in teaching gravitation"(PDF).American Journal of Physics.71 (11):1127–1135.Bibcode:2003AmJPh..71.1127G.doi:10.1119/1.1607336.
- ^Working Group 2 of the Joint Committee for Guides in Metrology (JCGM/WG 2) (2008).International vocabulary of metrology – Basic and general concepts and associated terms (VIM) – Vocabulaire international de métrologie – Concepts fondamentaux et généraux et termes associés (VIM)(PDF) (JCGM 200:2008) (in English and French) (3rd ed.).BIPM. Note 3 to Section 1.2.
{{cite book}}
: CS1 maint: numeric names: authors list (link) - ^ab"Resolution of the 3rd meeting of the CGPM (1901)". BIPM.
- ^David B. Newell; Eite Tiesinga, eds. (2019).The International System of Units (SI)(PDF) (NIST Special publication 330, 2019 ed.). Gaithersburg, MD:NIST. p. 46.
- ^Halliday, David; Resnick, Robert; Walker, Jearl (2007).Fundamentals of Physics. Vol. 1 (8th ed.). Wiley. p. 95.ISBN 978-0-470-04473-5.
- ^Chester, W. Mechanics. George Allen & Unwin. London. 1979.ISBN 0-04-510059-4. Section 3.2 at page 83.
- ^ISO 80000-4:2006, Quantities and units - Part 4: Mechanics
- ^Bell, F. (1998).Principles of mechanics and biomechanics. Stanley Thornes Ltd. pp. 174–176.ISBN 978-0-7487-3332-3.
- ^Galili, Igal (1993). "Weight and gravity: teachers' ambiguity and students' confusion about the concepts".International Journal of Science Education.15 (2):149–162.Bibcode:1993IJSEd..15..149G.doi:10.1080/0950069930150204.
- ^abcA. Thompson & B. N. Taylor (March 3, 2010) [July 2, 2009]."The NIST Guide for the use of the International System of Units, Section 8: Comments on Some Quantities and Their Units".Special Publication 811.NIST. Retrieved2010-05-22.
- ^Hodgeman, Charles, ed. (1961).Handbook of Chemistry and Physics (44th ed.). Cleveland, US: Chemical Rubber Publishing Co. pp. 3480–3485.
- ^Clark, John B (1964).Physical and Mathematical Tables. Oliver and Boyd.
- ^"Common Conversion Factors, Approximate Conversions from U.S. Customary Measures to Metric".NIST.National Institute of Standards and Technology. 13 January 2010. Retrieved2013-09-03.
- ^This value excludes the adjustment for centrifugal force due to Earth’s rotation and is therefore greater than the 9.80665 m/s2 value ofstandard gravity.