Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Weierstrass elliptic function

From Wikipedia, the free encyclopedia
Class of mathematical functions
"P-function" redirects here. For the phase-space function representing a quantum state, seeGlauber–Sudarshan P representation.

Inmathematics, theWeierstrass elliptic functions areelliptic functions that take a particularly simple form. They are named forKarl Weierstrass. This class of functions is also referred to as℘-functions and they are usually denoted by the symbol ℘, a uniquely fancyscriptp. They play an important role in the theory of elliptic functions, i.e.,meromorphic functions that aredoubly periodic. A ℘-function together with its derivative can be used to parameterizeelliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

Symbol for Weierstrass P function

Symbol for Weierstrass{\displaystyle \wp }-function

Model of Weierstrass{\displaystyle \wp }-function

Motivation

[edit]

Acubic of the formCg2,g3C={(x,y)C2:y2=4x3g2xg3}{\displaystyle C_{g_{2},g_{3}}^{\mathbb {C} }=\{(x,y)\in \mathbb {C} ^{2}:y^{2}=4x^{3}-g_{2}x-g_{3}\}}, whereg2,g3C{\displaystyle g_{2},g_{3}\in \mathbb {C} } are complex numbers withg2327g320{\displaystyle g_{2}^{3}-27g_{3}^{2}\neq 0}, cannot berationally parameterized.[1] Yet one still wants to find a way to parameterize it.

For thequadricK={(x,y)R2:x2+y2=1}{\displaystyle K=\left\{(x,y)\in \mathbb {R} ^{2}:x^{2}+y^{2}=1\right\}}; theunit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function:ψ:R/2πZK,t(sint,cost).{\displaystyle \psi :\mathbb {R} /2\pi \mathbb {Z} \to K,\quad t\mapsto (\sin t,\cos t).}Because of the periodicity of the sine and cosineR/2πZ{\displaystyle \mathbb {R} /2\pi \mathbb {Z} } is chosen to be the domain, so the function is bijective.

In a similar way one can get a parameterization ofCg2,g3C{\displaystyle C_{g_{2},g_{3}}^{\mathbb {C} }} by means of the doubly periodic{\displaystyle \wp }-function and its derivative, namely via(x,y)=((z),(z)){\displaystyle (x,y)=(\wp (z),\wp '(z))}. This parameterization has the domainC/Λ{\displaystyle \mathbb {C} /\Lambda }, which is topologically equivalent to atorus.[2]

There is another analogy to the trigonometric functions. Consider the integral functiona(x)=0xdy1y2.{\displaystyle a(x)=\int _{0}^{x}{\frac {dy}{\sqrt {1-y^{2}}}}.}It can be simplified by substitutingy=sint{\displaystyle y=\sin t} ands=arcsinx{\displaystyle s=\arcsin x}:a(x)=0sdt=s=arcsinx.{\displaystyle a(x)=\int _{0}^{s}dt=s=\arcsin x.}That meansa1(x)=sinx{\displaystyle a^{-1}(x)=\sin x}. So the sine function is an inverse function of an integral function.[3]

Elliptic functions are the inverse functions ofelliptic integrals. In particular, let:u(z)=zds4s3g2sg3.{\displaystyle u(z)=\int _{z}^{\infty }{\frac {ds}{\sqrt {4s^{3}-g_{2}s-g_{3}}}}.}Then the extension ofu1{\displaystyle u^{-1}} to the complex plane equals the{\displaystyle \wp }-function.[4] This invertibility is used incomplex analysis to provide a solution to certainnonlinear differential equations satisfying thePainlevé property, i.e., those equations that admitpoles as their onlymovable singularities.[5]

Definition

[edit]
Visualization of the{\displaystyle \wp }-function with invariantsg2=1+i{\displaystyle g_{2}=1+i} andg3=23i{\displaystyle g_{3}=2-3i} in which white corresponds to a pole, black to a zero.

Letω1,ω2C{\displaystyle \omega _{1},\omega _{2}\in \mathbb {C} } be twocomplex numbers that arelinearly independent overR{\displaystyle \mathbb {R} } and letΛ:=Zω1+Zω2:={mω1+nω2:m,nZ}{\displaystyle \Lambda :=\mathbb {Z} \omega _{1}+\mathbb {Z} \omega _{2}:=\{m\omega _{1}+n\omega _{2}:m,n\in \mathbb {Z} \}} be theperiod lattice generated by those numbers. Then the{\displaystyle \wp }-function is defined as follows:

(z,ω1,ω2):=(z)=1z2+λΛ{0}(1(zλ)21λ2).{\displaystyle \wp (z,\omega _{1},\omega _{2}):=\wp (z)={\frac {1}{z^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(z-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right).}

This series converges locallyuniformly absolutely in thecomplex torusC/Λ{\displaystyle \mathbb {C} /\Lambda }.

It is common to use1{\displaystyle 1} andτ{\displaystyle \tau } in theupper half-planeH:={zC:Im(z)>0}{\displaystyle \mathbb {H} :=\{z\in \mathbb {C} :\operatorname {Im} (z)>0\}} asgenerators of thelattice. Dividing byω1{\textstyle \omega _{1}} maps the latticeZω1+Zω2{\displaystyle \mathbb {Z} \omega _{1}+\mathbb {Z} \omega _{2}} isomorphically onto the latticeZ+Zτ{\displaystyle \mathbb {Z} +\mathbb {Z} \tau } withτ=ω2ω1{\textstyle \tau ={\tfrac {\omega _{2}}{\omega _{1}}}}. Becauseτ{\displaystyle -\tau } can be substituted forτ{\displaystyle \tau }, without loss of generality we can assumeτH{\displaystyle \tau \in \mathbb {H} }, and then define(z,τ):=(z,1,τ){\displaystyle \wp (z,\tau ):=\wp (z,1,\tau )}. With that definition, we have(z,ω1,ω2)=ω12(z/ω1,ω2/ω1){\displaystyle \wp (z,\omega _{1},\omega _{2})=\omega _{1}^{-2}\wp (z/\omega _{1},\omega _{2}/\omega _{1})}.

Properties

[edit]
(λz,λω1,λω2)=λ2(z,ω1,ω2).{\displaystyle \wp (\lambda z,\lambda \omega _{1},\lambda \omega _{2})=\lambda ^{-2}\wp (z,\omega _{1},\omega _{2}).}
(z)=1(z)2+λΛ{0}(1(zλ)21λ2)=1z2+λΛ{0}(1(z+λ)21λ2)=1z2+λΛ{0}(1(zλ)21λ2)=(z).{\displaystyle {\begin{aligned}\wp (-z)&={\frac {1}{(-z)^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(-z-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right)\\&={\frac {1}{z^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(z+\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right)\\&={\frac {1}{z^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(z-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right)=\wp (z).\end{aligned}}}
The second last equality holds because{λ:λΛ}=Λ{\displaystyle \{-\lambda :\lambda \in \Lambda \}=\Lambda }. Since the sum converges absolutely this rearrangement does not change the limit.

Laurent expansion

[edit]

Letr:=min{|λ|:0λΛ}{\displaystyle r:=\min\{{|\lambda }|:0\neq \lambda \in \Lambda \}}. Then for0<|z|<r{\displaystyle 0<|z|<r} the{\displaystyle \wp }-function has the followingLaurent expansion(z)=1z2+n=1(2n+1)G2n+2z2n{\displaystyle \wp (z)={\frac {1}{z^{2}}}+\sum _{n=1}^{\infty }(2n+1)G_{2n+2}z^{2n}}whereGn=0λΛλn{\displaystyle G_{n}=\sum _{0\neq \lambda \in \Lambda }\lambda ^{-n}} forn3{\displaystyle n\geq 3} are so calledEisenstein series.[6]

Differential equation

[edit]

Setg2=60G4{\displaystyle g_{2}=60G_{4}} andg3=140G6{\displaystyle g_{3}=140G_{6}}. Then the{\displaystyle \wp }-function satisfies the differential equation[6]2(z)=43(z)g2(z)g3.{\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}.}This relation can be verified by forming a linear combination of powers of{\displaystyle \wp } and{\displaystyle \wp '} to eliminate the pole atz=0{\displaystyle z=0}. This yields an entire elliptic function that has to be constant byLiouville's theorem.[6]

Invariants

[edit]
The real part of the invariantg3 as a function of the square of thenomeq on the unit disk.
The imaginary part of the invariantg3 as a function of the square of the nomeq on the unit disk.

The coefficients of the above differential equationg2{\displaystyle g_{2}} andg3{\displaystyle g_{3}} are known as theinvariants. Because they depend on the latticeΛ{\displaystyle \Lambda } they can be viewed as functions inω1{\displaystyle \omega _{1}} andω2{\displaystyle \omega _{2}}.

The series expansion suggests thatg2{\displaystyle g_{2}} andg3{\displaystyle g_{3}} arehomogeneous functions of degree4{\displaystyle -4} and6{\displaystyle -6}. That is[7]g2(λω1,λω2)=λ4g2(ω1,ω2){\displaystyle g_{2}(\lambda \omega _{1},\lambda \omega _{2})=\lambda ^{-4}g_{2}(\omega _{1},\omega _{2})}g3(λω1,λω2)=λ6g3(ω1,ω2){\displaystyle g_{3}(\lambda \omega _{1},\lambda \omega _{2})=\lambda ^{-6}g_{3}(\omega _{1},\omega _{2})} forλ0{\displaystyle \lambda \neq 0}.

Ifω1{\displaystyle \omega _{1}} andω2{\displaystyle \omega _{2}} are chosen in such a way thatIm(ω2ω1)>0{\displaystyle \operatorname {Im} \left({\tfrac {\omega _{2}}{\omega _{1}}}\right)>0},g2{\displaystyle g_{2}} andg3{\displaystyle g_{3}} can be interpreted as functions on theupper half-planeH:={zC:Im(z)>0}{\displaystyle \mathbb {H} :=\{z\in \mathbb {C} :\operatorname {Im} (z)>0\}}.

Letτ=ω2ω1{\displaystyle \tau ={\tfrac {\omega _{2}}{\omega _{1}}}}. One has:[8]g2(1,τ)=ω14g2(ω1,ω2),{\displaystyle g_{2}(1,\tau )=\omega _{1}^{4}g_{2}(\omega _{1},\omega _{2}),}g3(1,τ)=ω16g3(ω1,ω2).{\displaystyle g_{3}(1,\tau )=\omega _{1}^{6}g_{3}(\omega _{1},\omega _{2}).}That meansg2 andg3 are only scaled by doing this. Setg2(τ):=g2(1,τ){\displaystyle g_{2}(\tau ):=g_{2}(1,\tau )} andg3(τ):=g3(1,τ).{\displaystyle g_{3}(\tau ):=g_{3}(1,\tau ).}As functions ofτH{\displaystyle \tau \in \mathbb {H} },g2{\displaystyle g_{2}} andg3{\displaystyle g_{3}} are so calledmodular forms.

TheFourier series forg2{\displaystyle g_{2}} andg3{\displaystyle g_{3}} are given as follows:[9]g2(τ)=43π4[1+240k=1σ3(k)q2k]{\displaystyle g_{2}(\tau )={\frac {4}{3}}\pi ^{4}\left[1+240\sum _{k=1}^{\infty }\sigma _{3}(k)q^{2k}\right]}g3(τ)=827π6[1504k=1σ5(k)q2k]{\displaystyle g_{3}(\tau )={\frac {8}{27}}\pi ^{6}\left[1-504\sum _{k=1}^{\infty }\sigma _{5}(k)q^{2k}\right]}whereσm(k):=dkdm{\displaystyle \sigma _{m}(k):=\sum _{d\mid {k}}d^{m}}is thedivisor function andq=eπiτ{\displaystyle q=e^{\pi i\tau }} is thenome.

Modular discriminant

[edit]
The real part of the discriminant as a function of the square of the nomeq on the unit disk.

Themodular discriminantΔ{\displaystyle \Delta } is defined as thediscriminant of the characteristic polynomial of the differential equation2(z)=43(z)g2(z)g3{\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}} as follows:Δ=g2327g32.{\displaystyle \Delta =g_{2}^{3}-27g_{3}^{2}.}The discriminant is a modular form of weight12{\displaystyle 12}. That is, under the action of themodular group, it transforms asΔ(aτ+bcτ+d)=(cτ+d)12Δ(τ){\displaystyle \Delta \left({\frac {a\tau +b}{c\tau +d}}\right)=\left(c\tau +d\right)^{12}\Delta (\tau )}wherea,b,d,cZ{\displaystyle a,b,d,c\in \mathbb {Z} } withadbc=1{\displaystyle ad-bc=1}.[10]

Note thatΔ=(2π)12η24{\displaystyle \Delta =(2\pi )^{12}\eta ^{24}} whereη{\displaystyle \eta } is theDedekind eta function.[11]

For the Fourier coefficients ofΔ{\displaystyle \Delta }, seeRamanujan tau function.

The constantse1,e2 ande3

[edit]

e1{\displaystyle e_{1}},e2{\displaystyle e_{2}} ande3{\displaystyle e_{3}} are usually used to denote the values of the{\displaystyle \wp }-function at the half-periods.e1(ω12){\displaystyle e_{1}\equiv \wp \left({\frac {\omega _{1}}{2}}\right)}e2(ω22){\displaystyle e_{2}\equiv \wp \left({\frac {\omega _{2}}{2}}\right)}e3(ω1+ω22){\displaystyle e_{3}\equiv \wp \left({\frac {\omega _{1}+\omega _{2}}{2}}\right)}They are pairwise distinct and only depend on the latticeΛ{\displaystyle \Lambda } and not on its generators.[12]

e1{\displaystyle e_{1}},e2{\displaystyle e_{2}} ande3{\displaystyle e_{3}} are the roots of the cubic polynomial4(z)3g2(z)g3{\displaystyle 4\wp (z)^{3}-g_{2}\wp (z)-g_{3}} and are related by the equation:e1+e2+e3=0.{\displaystyle e_{1}+e_{2}+e_{3}=0.}Because those roots are distinct the discriminantΔ{\displaystyle \Delta } does not vanish on the upper half plane.[13] Now we can rewrite the differential equation:2(z)=4((z)e1)((z)e2)((z)e3).{\displaystyle \wp '^{2}(z)=4(\wp (z)-e_{1})(\wp (z)-e_{2})(\wp (z)-e_{3}).}That means the half-periods are zeros of{\displaystyle \wp '}.

The invariantsg2{\displaystyle g_{2}} andg3{\displaystyle g_{3}} can be expressed in terms of these constants in the following way:[14]g2=4(e1e2+e1e3+e2e3){\displaystyle g_{2}=-4(e_{1}e_{2}+e_{1}e_{3}+e_{2}e_{3})}g3=4e1e2e3{\displaystyle g_{3}=4e_{1}e_{2}e_{3}}e1{\displaystyle e_{1}},e2{\displaystyle e_{2}} ande3{\displaystyle e_{3}} are related to themodular lambda function:λ(τ)=e3e2e1e2,τ=ω2ω1.{\displaystyle \lambda (\tau )={\frac {e_{3}-e_{2}}{e_{1}-e_{2}}},\quad \tau ={\frac {\omega _{2}}{\omega _{1}}}.}

Relation to Jacobi's elliptic functions

[edit]

For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms ofJacobi's elliptic functions.

The basic relations are:[15](z)=e3+e1e3sn2w=e2+(e1e3)dn2wsn2w=e1+(e1e3)cn2wsn2w{\displaystyle \wp (z)=e_{3}+{\frac {e_{1}-e_{3}}{\operatorname {sn} ^{2}w}}=e_{2}+(e_{1}-e_{3}){\frac {\operatorname {dn} ^{2}w}{\operatorname {sn} ^{2}w}}=e_{1}+(e_{1}-e_{3}){\frac {\operatorname {cn} ^{2}w}{\operatorname {sn} ^{2}w}}}wheree1,e2{\displaystyle e_{1},e_{2}} ande3{\displaystyle e_{3}} are the three roots described above and where the modulusk of the Jacobi functions equalsk=e2e3e1e3{\displaystyle k={\sqrt {\frac {e_{2}-e_{3}}{e_{1}-e_{3}}}}}and their argumentw equalsw=ze1e3.{\displaystyle w=z{\sqrt {e_{1}-e_{3}}}.}

Relation to Jacobi's theta functions

[edit]

The function(z,τ)=(z,1,ω2/ω1){\displaystyle \wp (z,\tau )=\wp (z,1,\omega _{2}/\omega _{1})} can be represented byJacobi's theta functions:(z,τ)=(πθ2(0,q)θ3(0,q)θ4(πz,q)θ1(πz,q))2π23(θ24(0,q)+θ34(0,q)){\displaystyle \wp (z,\tau )=\left(\pi \theta _{2}(0,q)\theta _{3}(0,q){\frac {\theta _{4}(\pi z,q)}{\theta _{1}(\pi z,q)}}\right)^{2}-{\frac {\pi ^{2}}{3}}\left(\theta _{2}^{4}(0,q)+\theta _{3}^{4}(0,q)\right)}whereq=eπiτ{\displaystyle q=e^{\pi i\tau }} is the nome andτ{\displaystyle \tau } is the period ratio(τH){\displaystyle (\tau \in \mathbb {H} )}.[16] This also provides a very rapid algorithm for computing(z,τ){\displaystyle \wp (z,\tau )}.

Relation to elliptic curves

[edit]
See also:Elliptic curve § Elliptic curves over the complex numbers

Consider the embedding of the cubic curve in thecomplex projective plane

C¯g2,g3C={(x,y)C2:y2=4x3g2xg3}{O}C2P1(C)=P2(C).{\displaystyle {\bar {C}}_{g_{2},g_{3}}^{\mathbb {C} }=\{(x,y)\in \mathbb {C} ^{2}:y^{2}=4x^{3}-g_{2}x-g_{3}\}\cup \{O\}\subset \mathbb {C} ^{2}\cup \mathbb {P} _{1}(\mathbb {C} )=\mathbb {P} _{2}(\mathbb {C} ).}

whereO{\displaystyle O} is a point lying on theline at infinityP1(C){\displaystyle \mathbb {P} _{1}(\mathbb {C} )}. For this cubic there exists no rational parameterization, ifΔ0{\displaystyle \Delta \neq 0}.[1] In this case it is also called an elliptic curve. Nevertheless there is a parameterization inhomogeneous coordinates that uses the{\displaystyle \wp }-function and its derivative{\displaystyle \wp '}:[17]

φ(,):C/ΛC¯g2,g3C,z{[(z):(z):1]zΛ[0:1:0]zΛ{\displaystyle \varphi (\wp ,\wp '):\mathbb {C} /\Lambda \to {\bar {C}}_{g_{2},g_{3}}^{\mathbb {C} },\quad z\mapsto {\begin{cases}\left[\wp (z):\wp '(z):1\right]&z\notin \Lambda \\\left[0:1:0\right]\quad &z\in \Lambda \end{cases}}}

Now the mapφ{\displaystyle \varphi } isbijective and parameterizes the elliptic curveC¯g2,g3C{\displaystyle {\bar {C}}_{g_{2},g_{3}}^{\mathbb {C} }}.

C/Λ{\displaystyle \mathbb {C} /\Lambda } is anabelian group and atopological space, equipped with thequotient topology.

It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pairg2,g3C{\displaystyle g_{2},g_{3}\in \mathbb {C} } withΔ=g2327g320{\displaystyle \Delta =g_{2}^{3}-27g_{3}^{2}\neq 0} there exists a latticeZω1+Zω2{\displaystyle \mathbb {Z} \omega _{1}+\mathbb {Z} \omega _{2}}, such that

g2=g2(ω1,ω2){\displaystyle g_{2}=g_{2}(\omega _{1},\omega _{2})} andg3=g3(ω1,ω2){\displaystyle g_{3}=g_{3}(\omega _{1},\omega _{2})}.[18]

The statement that elliptic curves overQ{\displaystyle \mathbb {Q} } can be parameterized overQ{\displaystyle \mathbb {Q} }, is known as themodularity theorem. This is an important theorem innumber theory. It was part ofAndrew Wiles' proof (1995) ofFermat's Last Theorem.

Addition theorem

[edit]

The addition theorem states[19] that ifz,w,{\displaystyle z,w,} andz+w{\displaystyle z+w} do not belong toΛ{\displaystyle \Lambda }, thendet[1(z)(z)1(w)(w)1(z+w)(z+w)]=0.{\displaystyle \det {\begin{bmatrix}1&\wp (z)&\wp '(z)\\1&\wp (w)&\wp '(w)\\1&\wp (z+w)&-\wp '(z+w)\end{bmatrix}}=0.}This states that the pointsP=((z),(z)),{\displaystyle P=(\wp (z),\wp '(z)),}Q=((w),(w)),{\displaystyle Q=(\wp (w),\wp '(w)),} andR=((z+w),(z+w)){\displaystyle R=(\wp (z+w),-\wp '(z+w))} are collinear, the geometric form of thegroup law of an elliptic curve.

This can be proven[20] by considering constantsA,B{\displaystyle A,B} such that(z)=A(z)+B,(w)=A(w)+B.{\displaystyle \wp '(z)=A\wp (z)+B,\quad \wp '(w)=A\wp (w)+B.}Then the elliptic function(ζ)A(ζ)B{\displaystyle \wp '(\zeta )-A\wp (\zeta )-B}has a pole of order three at zero, and therefore three zeros whose sum belongs toΛ{\displaystyle \Lambda }. Two of the zeros arez{\displaystyle z} andw{\displaystyle w}, and thus the third is congruent tozw{\displaystyle -z-w}.

Alternative form

[edit]

The addition theorem can be put into the alternative form, forz,w,zw,z+wΛ{\displaystyle z,w,z-w,z+w\not \in \Lambda }:[21](z+w)=14[(z)(w)(z)(w)]2(z)(w).{\displaystyle \wp (z+w)={\frac {1}{4}}\left[{\frac {\wp '(z)-\wp '(w)}{\wp (z)-\wp (w)}}\right]^{2}-\wp (z)-\wp (w).}

As well as the duplication formula:[21](2z)=14[(z)(z)]22(z).{\displaystyle \wp (2z)={\frac {1}{4}}\left[{\frac {\wp ''(z)}{\wp '(z)}}\right]^{2}-2\wp (z).}

Proofs

[edit]

This can be proven from the addition theorem shown above. The pointsP=((u),(u)),Q=((v),(v)),{\displaystyle P=(\wp (u),\wp '(u)),Q=(\wp (v),\wp '(v)),} andR=((u+v),(u+v)){\displaystyle R=(\wp (u+v),-\wp '(u+v))} are collinear and lie on the curvey2=4x3g2xg3{\displaystyle y^{2}=4x^{3}-g_{2}x-g_{3}}. The slope of that line ism=yPyQxPxQ=(u)(v)(u)(v).{\displaystyle m={\frac {y_{P}-y_{Q}}{x_{P}-x_{Q}}}={\frac {\wp '(u)-\wp '(v)}{\wp (u)-\wp (v)}}.}Sox=xP=(u){\displaystyle x=x_{P}=\wp (u)},x=xQ=(v){\displaystyle x=x_{Q}=\wp (v)}, andx=xR=(u+v){\displaystyle x=x_{R}=\wp (u+v)} all satisfy a cubic(mx+q)2=4x3g2xg3,{\displaystyle (mx+q)^{2}=4x^{3}-g_{2}x-g_{3},} whereq{\displaystyle q} is a constant. This becomes4x3m2x2(2mq+g2)xg3q2=0.{\displaystyle 4x^{3}-m^{2}x^{2}-(2mq+g_{2})x-g_{3}-q^{2}=0.}ThusxP+xQ+xR=m24{\displaystyle x_{P}+x_{Q}+x_{R}={\frac {m^{2}}{4}}} which provides the wanted formula(u+v)+(u)+(v)=14[(u)(v)(u)(v)]2.{\displaystyle \wp (u+v)+\wp (u)+\wp (v)={\frac {1}{4}}\left[{\frac {\wp '(u)-\wp '(v)}{\wp (u)-\wp (v)}}\right]^{2}.}

A direct proof is as follows.[22] Any elliptic functionf{\displaystyle f} can be expressed as:f(u)=ci=1nσ(uai)σ(ubi)cC{\displaystyle f(u)=c\prod _{i=1}^{n}{\frac {\sigma (u-a_{i})}{\sigma (u-b_{i})}}\quad c\in \mathbb {C} } whereσ{\displaystyle \sigma } is theWeierstrass sigma function andai,bi{\displaystyle a_{i},b_{i}} are the respective zeros and poles in the period parallelogram. Considering the function(u)(v){\displaystyle \wp (u)-\wp (v)} as a function ofu{\displaystyle u}, we have(u)(v)=cσ(u+v)σ(uv)σ(u)2.{\displaystyle \wp (u)-\wp (v)=c{\frac {\sigma (u+v)\sigma (u-v)}{\sigma (u)^{2}}}.}Multiplying both sides byu2{\displaystyle u^{2}} and lettingu0{\displaystyle u\to 0}, we have1=cσ(v)2{\displaystyle 1=-c\sigma (v)^{2}}, soc=1σ(v)2(u)(v)=σ(u+v)σ(uv)σ(u)2σ(v)2.{\displaystyle c=-{\frac {1}{\sigma (v)^{2}}}\implies \wp (u)-\wp (v)=-{\frac {\sigma (u+v)\sigma (u-v)}{\sigma (u)^{2}\sigma (v)^{2}}}.}

By definition theWeierstrass zeta function:ddzlnσ(z)=ζ(z){\displaystyle {\frac {d}{dz}}\ln \sigma (z)=\zeta (z)} therefore we logarithmically differentiate both sides with respect tou{\displaystyle u} obtaining:(u)(u)(v)=ζ(u+v)2ζ(u)ζ(uv){\displaystyle {\frac {\wp '(u)}{\wp (u)-\wp (v)}}=\zeta (u+v)-2\zeta (u)-\zeta (u-v)} Once again by definitionζ(z)=(z){\displaystyle \zeta '(z)=-\wp (z)} thus by differentiating once more on both sides and rearranging the terms we obtain(u+v)=(u)+12(v)[(u)(v)](u)[(u)(v)][(u)(v)]2{\displaystyle -\wp (u+v)=-\wp (u)+{\frac {1}{2}}{\frac {\wp ''(v)[\wp (u)-\wp (v)]-\wp '(u)[\wp '(u)-\wp '(v)]}{[\wp (u)-\wp (v)]^{2}}}} Knowing that{\displaystyle \wp ''} has the following differential equation2=122g2{\displaystyle 2\wp ''=12\wp ^{2}-g_{2}} and rearranging the terms one gets the wanted formula(u+v)=14[(u)(v)(u)(v)]2(u)(v).{\displaystyle \wp (u+v)={\frac {1}{4}}\left[{\frac {\wp '(u)-\wp '(v)}{\wp (u)-\wp (v)}}\right]^{2}-\wp (u)-\wp (v).}

Typography

[edit]

The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.[footnote 1] It should not be confused with the normal mathematical script letters P: 𝒫 and 𝓅.

In computing, the letter ℘ is available as\wp inTeX. InUnicode the code point isU+2118 SCRIPT CAPITAL P, with the more correct aliasweierstrass elliptic function.[footnote 2] InHTML, it can be escaped as&weierp; or&wp;.

Character information
Preview
Unicode nameSCRIPT CAPITAL P /
WEIERSTRASS ELLIPTIC FUNCTION
Encodingsdecimalhex
Unicode8472U+2118
UTF-8226 132 152E2 84 98
Numeric character reference&#8472;&#x2118;
Named character reference&weierp;, &wp;

See also

[edit]

Footnotes

[edit]
  1. ^This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition ofA Course of Modern Analysis byE. T. Whittaker in 1902 also used it.[23]
  2. ^TheUnicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, likeU+1D4C5 𝓅MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function.Unicode added the alias as a correction.[24][25]

References

[edit]
  1. ^abHulek, Klaus. (2012),Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8,ISBN 978-3-8348-2348-9
  2. ^Rolf Busam (2006),Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259,ISBN 978-3-540-32058-6
  3. ^Jeremy Gray (2015),Real and the complex: a history of analysis in the 19th century (in German), Cham, p. 71,ISBN 978-3-319-23715-2{{citation}}: CS1 maint: location missing publisher (link)
  4. ^Rolf Busam (2006),Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294,ISBN 978-3-540-32058-6
  5. ^Ablowitz, Mark J.; Fokas, Athanassios S. (2003).Complex Variables: Introduction and Applications. Cambridge University Press. p. 185.doi:10.1017/cbo9780511791246.ISBN 978-0-521-53429-1.
  6. ^abcdeApostol, Tom M. (1976),Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 11,ISBN 0-387-90185-X
  7. ^Apostol, Tom M. (1976).Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 14.ISBN 0-387-90185-X.OCLC 2121639.
  8. ^Apostol, Tom M. (1976),Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 14,ISBN 0-387-90185-X
  9. ^Apostol, Tom M. (1990).Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. p. 20.ISBN 0-387-97127-0.OCLC 20262861.
  10. ^Apostol, Tom M. (1976).Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 50.ISBN 0-387-90185-X.OCLC 2121639.
  11. ^Chandrasekharan, K. (Komaravolu), 1920- (1985).Elliptic functions. Berlin: Springer-Verlag. p. 122.ISBN 0-387-15295-4.OCLC 12053023.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  12. ^Busam, Rolf (2006),Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270,ISBN 978-3-540-32058-6
  13. ^Apostol, Tom M. (1976),Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 13,ISBN 0-387-90185-X
  14. ^K. Chandrasekharan (1985),Elliptic functions (in German), Berlin: Springer-Verlag, p. 33,ISBN 0-387-15295-4
  15. ^Korn GA,Korn TM (1961).Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. p. 721.LCCN 59014456.
  16. ^Reinhardt, W. P.; Walker, P. L. (2010),"Weierstrass Elliptic and Modular Functions", inOlver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),NIST Handbook of Mathematical Functions, Cambridge University Press,ISBN 978-0-521-19225-5,MR 2723248.
  17. ^Hulek, Klaus. (2012),Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12,ISBN 978-3-8348-2348-9
  18. ^Hulek, Klaus. (2012),Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111,ISBN 978-3-8348-2348-9
  19. ^Watson; Whittaker (1927),A course in modern analysis (4 ed.), Cambridge University Press, pp. 440–441
  20. ^Watson; Whittaker (1927),A course in modern analysis (4 ed.), Cambridge University Press, pp. 440–441
  21. ^abRolf Busam (2006),Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286,ISBN 978-3-540-32058-6
  22. ^Akhiezer (1990),Elements of the theory of elliptic functions, AMS, pp. 40–41
  23. ^teika kazura (2017-08-17),The letter ℘ Name & origin?,MathOverflow, retrieved2018-08-30
  24. ^"Known Anomalies in Unicode Character Names".Unicode Technical Note #27. version 4. Unicode, Inc. 2017-04-10. Retrieved2017-07-20.
  25. ^"NameAliases-10.0.0.txt". Unicode, Inc. 2017-05-06. Retrieved2017-07-20.

External links

[edit]
Wikimedia Commons has media related toWeierstrass's elliptic functions.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Weierstrass_elliptic_function&oldid=1321323425"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp