Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

WENO methods

From Wikipedia, the free encyclopedia
Scheme used in the numerical solution of hyperbolic partial differential equations

In numerical solution of differential equations,WENO (weighted essentially non-oscillatory) methods are classes ofhigh-resolution schemes. WENO are used in the numerical solution of hyperbolic partial differential equations. These methods were developed fromENO methods (essentially non-oscillatory). The first WENO scheme was developed by Liu,Osher and Chan in 1994.[1] In 1996, Guang-Shan Jiang andChi-Wang Shu developed a new WENO scheme[2] called WENO-JS.[3] Nowadays, there are many WENO methods.[4]

See also

[edit]

References

[edit]
  1. ^Liu, Xu-Dong; Osher, Stanley; Chan, Tony (1994). "Weighted Essentially Non-oscillatory Schemes".Journal of Computational Physics.115:200–212.Bibcode:1994JCoPh.115..200L.CiteSeerX 10.1.1.24.8744.doi:10.1006/jcph.1994.1187.
  2. ^Jiang, Guang-Shan; Shu, Chi-Wang (1996). "Efficient Implementation of Weighted ENO Schemes".Journal of Computational Physics.126 (1):202–228.Bibcode:1996JCoPh.126..202J.CiteSeerX 10.1.1.7.6297.doi:10.1006/jcph.1996.0130.
  3. ^Ha, Youngsoo; Kim, Chang Ho; Lee, Yeon Ju; Yoon, Jungho (2012)."Mapped WENO schemes based on a new smoothness indicator for Hamilton–Jacobi equations".Journal of Mathematical Analysis and Applications.394 (2):670–682.doi:10.1016/j.jmaa.2012.04.040.
  4. ^Ketcheson, David I.; Gottlieb, Sigal; MacDonald, Colin B. (2011). "Strong Stability Preserving Two-step Runge–Kutta Methods".SIAM Journal on Numerical Analysis.49 (6):2618–2639.arXiv:1106.3626.doi:10.1137/10080960X.S2CID 16602876.

Further reading

[edit]
Finite difference
Parabolic
Hyperbolic
Others
Finite volume
Finite element
Meshless/Meshfree
Domain decomposition
Others
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=WENO_methods&oldid=1285279348"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp