Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Vertex function

From Wikipedia, the free encyclopedia
Effective particle coupling beyond tree level

Inquantum electrodynamics, thevertex function describes the coupling between aphoton and anelectron beyond the leading order ofperturbation theory. In particular, it is theone particle irreducible correlation function involving thefermionψ{\displaystyle \psi }, the antifermionψ¯{\displaystyle {\bar {\psi }}}, and thevector potentialA.

Definition

[edit]

The vertex functionΓμ{\displaystyle \Gamma ^{\mu }} can be defined in terms of afunctional derivative of theeffective action Seff as

Γμ=1eδ3Seffδψ¯δψδAμ{\displaystyle \Gamma ^{\mu }=-{1 \over e}{\delta ^{3}S_{\mathrm {eff} } \over \delta {\bar {\psi }}\delta \psi \delta A_{\mu }}}
The one-loop correction to the vertex function. This is the dominant contribution to the anomalous magnetic moment of the electron.

The dominant (and classical) contribution toΓμ{\displaystyle \Gamma ^{\mu }} is thegamma matrixγμ{\displaystyle \gamma ^{\mu }}, which explains the choice of the letter. The vertex function is constrained by the symmetries of quantum electrodynamics —Lorentz invariance;gauge invariance or thetransversality of the photon, as expressed by theWard identity; and invariance underparity — to take the following form:

Γμ=γμF1(q2)+iσμνqν2mF2(q2){\displaystyle \Gamma ^{\mu }=\gamma ^{\mu }F_{1}(q^{2})+{\frac {i\sigma ^{\mu \nu }q_{\nu }}{2m}}F_{2}(q^{2})}

whereσμν=(i/2)[γμ,γν]{\displaystyle \sigma ^{\mu \nu }=(i/2)[\gamma ^{\mu },\gamma ^{\nu }]},qν{\displaystyle q_{\nu }} is the incoming four-momentum of the external photon (on the right-hand side of the figure), andF1(q2) andF2(q2) are the Dirac and Pauliform factors,[1] respectively, that depend only on the momentum transferq2. At tree level (or leading order),F1(q2) = 1 andF2(q2) = 0. Beyond leading order, the corrections toF1(0) are exactly canceled by thefield strength renormalization. The form factorF2(0) corresponds to theanomalous magnetic momenta of the fermion, defined in terms of theLandé g-factor as:

a=g22=F2(0){\displaystyle a={\frac {g-2}{2}}=F_{2}(0)}

In 1948,Julian Schwinger calculated the first correction to anomalous magnetic moment, given by

F2(0)α2π{\displaystyle F_{2}(0)\approx {\frac {\alpha }{2\pi }}}

whereα is thefine-structure constant.[2]

See also

[edit]

References

[edit]
  1. ^Wong, Samuel S. M. (2024-11-12).Introductory Nuclear Physics. John Wiley & Sons.ISBN 978-3-527-41445-1.
  2. ^Teubner, Thomas (2018)."The anomalous anomaly".Nature Physics.14 (11):1148–1148.doi:10.1038/s41567-018-0341-3.ISSN 1745-2481.

External links

[edit]
Formalism
Particles
Concepts
Processes


Stub icon

Thisquantum mechanics-related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Vertex_function&oldid=1295563009"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp