Generalization of the standard Boltzmann–Gibbs entropy
In physics, theTsallis entropy is a generalization of the standardBoltzmann–Gibbs entropy. It is proportional to the expectation of theq-logarithm of a distribution.
Generalizations of the exponential family using theq-exponential function have been widely explored in statistical physics and information geometry. In the machine learning literature, theq-exponential family has garnered interest due to its flexibility in modeling tail behavior by tuning the parameterq.
Theq-exponential function and its inverse, theq-logarithm, are defined as follows:
where.
These functions recover the standard exponential and logarithmic functions in the limit, i.e., and. Like the ordinary exponential, is monotonic and convex for, and satisfies. However, a key distinction is that unless.
Tsallis entropy can be defined using theq-exponential:
The cross-entropy pendant is the expectation of the negative q-logarithm with respect to a second distribution,. So.
Using, this may be written. For smaller, values all tend towards.
The limit computes the negative of the slope of at and one recovers. So for fixed small, raising this expectation relates tolog-likelihood maximalization.
Many common distributions like the normal distribution belongs to the statisticalexponential families.Tsallis entropy for an exponential family can be written[3] as
whereF is log-normalizer andk the term indicating the carrier measure.For multivariate normal, termk is zero, and therefore the Tsallis entropy is in closed-form.
In scientific literature, the physical relevance of the Tsallis entropy has been debated.[4][5][6] However, from the years 2000 on, an increasingly wide spectrum of natural, artificial and socialcomplex systems have been identified which confirm the predictions and consequences that are derived from this nonadditive entropy, such as nonextensive statistical mechanics,[7] which generalizes the Boltzmann–Gibbs theory.
Among the various experimental verifications and applications presently available in the literature, the following ones deserve a special mention:
The distribution characterizing the motion of cold atoms in dissipativeoptical lattices predicted in 2003[8] and observed in 2006.[9]
The fluctuations of the magnetic field in thesolar wind enabled the calculation of the q-triplet (or Tsallis triplet).[10]
The velocity distributions in a driven dissipativedusty plasma.[11]
High energy collisional experiments at LHC/CERN (CMS, ATLAS and ALICE detectors)[14][15] and RHIC/Brookhaven (STAR and PHENIX detectors).[16]
Among the various available theoretical results which clarify the physical conditions under which Tsallis entropy and associated statistics apply, the following ones can be selected:
Several interesting physical systems[28] abide by entropicfunctionals that are more general than the standard Tsallis entropy. Therefore, several physically meaningful generalizations have been introduced. The two most general of these are notably:Superstatistics, introduced by C. Beck and E. G. D. Cohen in 2003[29] andSpectral Statistics, introduced by G. A. Tsekouras andConstantino Tsallis in 2005.
^Tsallis, Constantino (2009).Introduction to nonextensive statistical mechanics: approaching a complex world (Online-Ausg. ed.). New York: Springer.ISBN978-0-387-85358-1.
^Khachatryan, V.; Sirunyan, A.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; et al. (2010). "Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at√s=7 TeV".Physical Review Letters.105 (2) 022002.arXiv:1005.3299.Bibcode:2010PhRvL.105b2002K.doi:10.1103/PhysRevLett.105.022002.PMID20867699.S2CID119196941.
^Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; et al. (2011). "Charged particle transverse momentum spectra in pp collisions at $√s= 0.9 and 7 TeV".Journal of High Energy Physics.2011 (8): 86.arXiv:1104.3547.Bibcode:2011JHEP...08..086C.doi:10.1007/JHEP08(2011)086.S2CID122835798.
^Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Aphecetche, L.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; et al. (2011). "Measurement of neutral mesons inp+p collisions at√s=200 GeV and scaling properties of hadron production".Physical Review D.83 (5) 052004.arXiv:1005.3674.Bibcode:2011PhRvD..83e2004A.doi:10.1103/PhysRevD.83.052004.S2CID85560021.
^Plastino, A. R.; Plastino, A. (1995). "Non-extensive statistical mechanics and generalized Fokker-Planck equation".Physica A: Statistical Mechanics and Its Applications.222 (1–4):347–354.Bibcode:1995PhyA..222..347P.doi:10.1016/0378-4371(95)00211-1.