Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Transmon

From Wikipedia, the free encyclopedia
Superconducting qubit implementation
Part of a series of articles about
Quantum mechanics
iddt|Ψ=H^|Ψ{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }
EigenenergiesEm{\displaystyle E_{m}}(first three levels,m=0,1,2{\displaystyle m=0,1,2}) of the qubit Hamiltonian as a function of the effective offset chargeng{\displaystyle n_{g}} for different ratiosEJ/Ec{\displaystyle E_{J}/E_{c}}. Energies are given in units of the transition energyE01{\displaystyle E_{01}}, evaluated at the degeneracy pointng=0.5{\displaystyle n_{g}=0.5}. The zero point of energy is chosen as the bottom of them=0{\displaystyle m=0} level. The charge qubit (smallEJ/Ec{\displaystyle E_{J}/E_{c}}, top) is normally operated at theng=0.5{\displaystyle n_{g}=0.5} "sweet spot" where fluctuations cause less energy shift and the anharmonicity is maximal. Transmon (largeEJ/Ec{\displaystyle E_{J}/E_{c}}, bottom) energy levels are insensitive to fluctuations but the anharmonicity is reduced.

Inquantum computing, and more specifically insuperconducting quantum computing, atransmon is a type ofsuperconductingcharge qubit designed to have reduced sensitivity to charge noise. The transmon was developed by Jens Koch, Terri M. Yu,Jay Gambetta,Andrew Houck, David Schuster, Johannes Majer, Alexandre Blais,Michel Devoret,Steven M. Girvin, andRobert J. Schoelkopf atYale University andUniversité de Sherbrooke in 2007.[1][2] Its name is an abbreviation of the termtransmission line shuntedplasma oscillationqubit; one which consists of aCooper-pair box "where the two superconductors are also [capacitively] shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".[3]

A device consisting of four transmon qubits, fourquantum buses, and four readoutresonators fabricated byIBM and published innpj Quantum Information in January 2017.[4]

The transmon achieves its reduced sensitivity to charge noise by significantly increasing the ratio of theJosephson energy to the charging energy. This is accomplished through the use of a large shunting capacitor. The result is energy level spacings that are approximately independent of offset charge. Planar on-chip transmon qubits haveT1 coherence times approximately 30 μs to 40 μs.[5] Recent work has shown significantly improvedT1 times as long as 95 μs by replacing the superconductingtransmission line cavity with a three-dimensional superconducting cavity,[6][7] and by replacingniobium withtantalum in the transmon device,T1 is further improved up to 0.3 ms.[8] These results demonstrate that previousT1 times were not limited byJosephson junction losses. Understanding the fundamental limits on the coherence time insuperconducting qubits such as the transmon is an active area of research.

Comparison to Cooper-pair box

[edit]

The transmon design is similar to the first design of the charge qubit[9] known as a "Cooper-pair box"; both are described by the same Hamiltonian, with the only difference being theEJ/EC{\displaystyle E_{\rm {J}}/E_{\rm {C}}} ratio. HereEJ{\displaystyle E_{\rm {J}}} is theJosephson energy of the junction, andEC{\displaystyle E_{\rm {C}}} is the charging energy inversely proportional to the total capacitance of the qubit circuit. Transmons typically haveEJ/EC1{\displaystyle E_{\mathrm {J} }/E_{\mathrm {C} }\gg 1} (whileEJ/EC1{\displaystyle E_{\mathrm {J} }/E_{\mathrm {C} }\lesssim 1} for typical Cooper-pair-box qubits), which is achieved by shunting the Josephson junction with an additional largecapacitor.

The benefit of increasing theEJ/EC{\displaystyle E_{\rm {J}}/E_{\rm {C}}} ratio is the insensitivity to charge noise—the energy levels become independent of the offset chargeng{\displaystyle n_{g}} across the junction; thus thedephasing time of the qubit is prolonged. The disadvantage is the reduced anharmonicityα=(E21E10)/E10{\displaystyle \alpha =(E_{21}-E_{10})/E_{10}}, whereEij{\displaystyle E_{ij}} is the energy difference betweeneigenstates|i{\displaystyle |i\rangle } and|j{\displaystyle |j\rangle }. Reduced anharmonicity complicates the device operation as a two level system, e.g. exciting the device from the ground state to the first excited state by a resonant pulse also populates the higher excited state. This complication is overcome by complex microwave pulse design, that takes into account the higher energy levels, and prohibits their excitation by destructive interference. Also, while the variation ofE10{\displaystyle E_{10}}with respect tong{\displaystyle n_{g}} tend to decrease exponentially withEJ/EC{\displaystyle E_{\mathrm {J} }/E_{\mathrm {C} }}, the anharmonicity only has a weaker, algebraic dependence onEJ/EC{\displaystyle E_{\mathrm {J} }/E_{\mathrm {C} }} as(EJ/EC)1/2{\displaystyle \sim (E_{\mathrm {J} }/E_{\mathrm {C} })^{-1/2}}. The significant gain in the coherence time outweigh the decrease in the anharmonicity for controlling the states with high fidelity.

Measurement, control and coupling of transmons is performed by means of microwave resonators with techniques fromcircuit quantum electrodynamics also applicable toother superconducting qubits. Coupling to the resonators is done by placing a capacitor between the qubit and the resonator, at a point where the resonatorelectromagnetic field is greatest. For example, inIBM Quantum Experience devices, the resonators are implemented with "quarter wave"coplanar waveguides with maximal field at the signal-ground short at the waveguide end; thus every IBM transmon qubit has a long resonator "tail". The initial proposal included similartransmission line resonators coupled to every transmon, becoming a part of the name. However, charge qubits operated at a similarEJ/EC{\displaystyle E_{\rm {J}}/E_{\rm {C}}} regime, coupled to different kinds of microwave cavities are referred to as transmons as well.

Applications

[edit]

Superconducting quantum processors

[edit]

Transmons are the default qubit in most large scale quantum processors, including Google'sWillow processor, a chip with 105 physical transmon qubits.[10] Other companies that use transmon qubits includeIBM,Rigetti, andIQM.

Bosonic or hybrid quantum memory

[edit]

While most quantum computation systems are qubit-based, an alternative method is to use harmonic oscillator modes, or bosonic modes, as the logical subspace.[11][12] In such systems, transmons are used as ancillas for universal control of the cavity's bosonic modes.[13] This allows for physical realizations of oscillator-based error correction codes.[11] These codes are known as 'bosonic codes'.

Transmons as qudits instead of qubits

[edit]

Transmons have been explored for use asd-dimensionalqudits via the additional energy levels that naturally occur above thequbit subspace (the lowest two states). For example, the lowestthree levels can be used to make a transmonqutrit; in the early 2020s, researchers have reported realizations of single-qutritquantum gates on transmons[14][15] as well as two-qutritentangling gates.[16] Entangling gates on transmons have also been explored theoretically and in simulations for the general case of qudits of arbitraryd.[17]

See also

[edit]

References

[edit]
  1. ^Koch, Jens; Yu, Terri M.; Gambetta, Jay; Houck, A. A.; Schuster, D. I.; Majer, J.; Blais, Alexandre; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J. (2007-10-12). "Charge-insensitive qubit design derived from the Cooper pair box".Physical Review A.76 (4) 042319.arXiv:cond-mat/0703002.Bibcode:2007PhRvA..76d2319K.doi:10.1103/physreva.76.042319.ISSN 1050-2947.S2CID 53983107.
  2. ^Schreier, J. A.; Houck, A. A.; Koch, Jens; Schuster, D. I.; Johnson, B. R.; et al. (2008-05-12). "Suppressing charge noise decoherence in superconducting charge qubits".Physical Review B.77 (18). American Physical Society: 180402.arXiv:0712.3581.Bibcode:2008PhRvB..77r0502S.doi:10.1103/physrevb.77.180502.ISSN 1098-0121.S2CID 119181860.
  3. ^Fink, Johannes M. (2010).Quantum Nonlinearities in Strong Coupling Circuit QED (Ph.D.).ETH Zurich.
  4. ^Gambetta, Jay M.;Chow, Jerry M.; Steffen, Matthias (2017-01-13)."Building logical qubits in a superconducting quantum computing system".npj Quantum Information.3 (1). Springer Science and Business Media LLC: 2.arXiv:1510.04375.Bibcode:2017npjQI...3....2G.doi:10.1038/s41534-016-0004-0.ISSN 2056-6387.S2CID 118517248.
  5. ^Barends, R.; Kelly, J.; Megrant, A.; Sank, D.; Jeffrey, E.; et al. (2013-08-22). "Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits".Physical Review Letters.111 (8) 080502.arXiv:1304.2322.Bibcode:2013PhRvL.111h0502B.doi:10.1103/physrevlett.111.080502.ISSN 0031-9007.PMID 24010421.S2CID 27081288.
  6. ^Paik, Hanhee; Schuster, D. I.; Bishop, Lev S.; Kirchmair, G.; Catelani, G.; et al. (2011-12-05). "Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture".Physical Review Letters.107 (24) 240501.arXiv:1105.4652.Bibcode:2011PhRvL.107x0501P.doi:10.1103/physrevlett.107.240501.ISSN 0031-9007.PMID 22242979.S2CID 19296685.
  7. ^Rigetti, Chad; Gambetta, Jay M.; Poletto, Stefano; Plourde, B. L. T.; Chow, Jerry M.; et al. (2012-09-24). "Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms".Physical Review B.86 (10) 100506. American Physical Society.arXiv:1202.5533.Bibcode:2012PhRvB..86j0506R.doi:10.1103/physrevb.86.100506.ISSN 1098-0121.S2CID 118702797.
  8. ^Place, Alexander P. M.; Rodgers, Lila V. H.; Mundada, Pranav; Smitham, Basil M.; Fitzpatrick, Mattias; Leng, Zhaoqi; Premkumar, Anjali; Bryon, Jacob; Vrajitoarea, Andrei; Sussman, Sara; Cheng, Guangming; Madhavan, Trisha; Cava, Robert J.;de Leon, Nathalie; Houck, Andrew A. (2021-03-19)."New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds".Nature Communications.12 (1): 1779.arXiv:2003.00024.Bibcode:2021NatCo..12.1779P.doi:10.1038/s41467-021-22030-5.ISSN 2041-1723.PMC 7979772.PMID 33741989.
  9. ^Bouchiat, V.; Vion, D.; Joyez, P.; Esteve, D.; Devoret, M. H. (1998). "Quantum coherence with a single Cooper pair".Physica Scripta.1998 (T76): 165.Bibcode:1998PhST...76..165B.doi:10.1238/Physica.Topical.076a00165.ISSN 1402-4896.S2CID 250887469.
  10. ^"Google's quantum breakthrough is 'truly remarkable' - but there's more to do".ZDNET. Retrieved2026-01-07.
  11. ^abCai, Weizhou; Ma, Yuwei; Wang, Weiting; Zou, Chang-Ling; Sun, Luyan (2021-01-01)."Bosonic quantum error correction codes in superconducting quantum circuits".Fundamental Research.1 (1):50–67.arXiv:2010.08699.doi:10.1016/j.fmre.2020.12.006.ISSN 2667-3258.
  12. ^Albert, Victor V.; Faist, Philippe, eds. (2022),"Bosonic code",The Error Correction Zoo, retrieved2026-01-07
  13. ^Ma, Wen-Long; Puri, Shruti; Schoelkopf, Robert J.; Devoret, Michel H.; Girvin, S. M.; Jiang, Liang (2021-09-15)."Quantum control of bosonic modes with superconducting circuits".Science Bulletin.66 (17):1789–1805.arXiv:2102.09668.doi:10.1016/j.scib.2021.05.024.ISSN 2095-9273.
  14. ^Yurtalan, M. A.; Shi, J.; Kononenko, M.; Lupascu, A.; Ashhab, S. (2020-10-27)."Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit".Physical Review Letters.125 (18) 180504.arXiv:2003.04879.Bibcode:2020PhRvL.125r0504Y.doi:10.1103/PhysRevLett.125.180504.PMID 33196217.S2CID 128064435.
  15. ^Morvan, A.; Ramasesh, V. V.; Blok, M. S.; Kreikebaum, J. M.; O'Brien, K.; Chen, L.; Mitchell, B. K.; Naik, R. K.; Santiago, D. I.; Siddiqi, I. (2021-05-27)."Qutrit Randomized Benchmarking".Physical Review Letters.126 (21) 210504.arXiv:2008.09134.Bibcode:2021PhRvL.126u0504M.doi:10.1103/PhysRevLett.126.210504.hdl:1721.1/143809.OSTI 1818119.PMID 34114846.S2CID 221246177.
  16. ^Goss, Noah; Morvan, Alexis; Marinelli, Brian; Mitchell, Bradley K.; Nguyen, Long B.; Naik, Ravi K.; Chen, Larry; Jünger, Christian; Kreikebaum, John Mark; Santiago, David I.; Wallman, Joel J.; Siddiqi, Irfan (2022-12-05)."High-fidelity qutrit entangling gates for superconducting circuits".Nature Communications.13 (1): 7481.arXiv:2206.07216.Bibcode:2022NatCo..13.7481G.doi:10.1038/s41467-022-34851-z.ISSN 2041-1723.PMC 9722686.PMID 36470858.
  17. ^Fischer, Laurin E.; Chiesa, Alessandro; Tacchino, Francesco; Egger, Daniel J.; Carretta, Stefano; Tavernelli, Ivano (2023-08-28)."Universal Qudit Gate Synthesis for Transmons".PRX Quantum.4 (3) 030327.arXiv:2212.04496.Bibcode:2023PRXQ....4c0327F.doi:10.1103/PRXQuantum.4.030327.S2CID 254408561.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Transmon&oldid=1333669919"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp