Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Transition-rate matrix

From Wikipedia, the free encyclopedia
(Redirected fromTransition rate matrix)

Matrix describing continuous-time Markov chains

Inprobability theory, atransition-rate matrix (also known as aQ-matrix,[1]intensity matrix,[2] orinfinitesimal generator matrix[3]) is an array of numbers describing the instantaneous rate at which acontinuous-time Markov chain transitions between states.

In a transition-rate matrixQ{\displaystyle Q} (sometimes writtenA{\displaystyle A}[4]), elementqij{\displaystyle q_{ij}} (forij{\displaystyle i\neq j}) denotes the rate departing fromi{\displaystyle i} and arriving in statej{\displaystyle j}. The ratesqij0{\displaystyle q_{ij}\geq 0}, and the diagonal elementsqii{\displaystyle q_{ii}} are defined such that

qii=jiqij{\displaystyle q_{ii}=-\sum _{j\neq i}q_{ij}},

and therefore the rows of the matrix sum to zero.

Up to a global sign, a large class of examples of such matrices is provided by theLaplacian of a directed, weighted graph. The vertices of the graph correspond to the Markov chain's states.

Properties

[edit]

The transition-rate matrix has following properties:[5]

Example

[edit]

AnM/M/1 queue, a model which counts the number of jobs in a queueing system with arrivals at rate λ and services at rate μ, has transition-rate matrix

Q=(λλμ(μ+λ)λμ(μ+λ)λμ(μ+λ)).{\displaystyle Q={\begin{pmatrix}-\lambda &\lambda \\\mu &-(\mu +\lambda )&\lambda \\&\mu &-(\mu +\lambda )&\lambda \\&&\mu &-(\mu +\lambda )&\ddots &\\&&&\ddots &\ddots \end{pmatrix}}.}

See also

[edit]

References

[edit]
  1. ^Suhov & Kelbert 2008, Definition 2.1.1.
  2. ^Asmussen, S. R. (2003). "Markov Jump Processes".Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 39–59.doi:10.1007/0-387-21525-5_2.ISBN 978-0-387-00211-8.
  3. ^Trivedi, K. S.; Kulkarni, V. G. (1993). "FSPNs: Fluid stochastic Petri nets".Application and Theory of Petri Nets 1993. Lecture Notes in Computer Science. Vol. 691. p. 24.doi:10.1007/3-540-56863-8_38.ISBN 978-3-540-56863-6.
  4. ^Rubino, Gerardo; Sericola, Bruno (1989)."Sojourn Times in Finite Markov Processes"(PDF).Journal of Applied Probability.26 (4). Applied Probability Trust:744–756.doi:10.2307/3214379.JSTOR 3214379.S2CID 54623773.
  5. ^Keizer, Joel (1972-11-01)."On the solutions and the steady states of a master equation".Journal of Statistical Physics.6 (2):67–72.Bibcode:1972JSP.....6...67K.doi:10.1007/BF01023679.ISSN 1572-9613.S2CID 120377514.


Stub icon

Thisprobability-related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Transition-rate_matrix&oldid=1292764783"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp