Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bump function

From Wikipedia, the free encyclopedia
(Redirected fromTest function)
Smooth and compactly supported function
The graph of the bump function(x,y)R2Ψ(r),{\displaystyle (x,y)\in \mathbb {R} ^{2}\mapsto \Psi (r),} wherer=(x2+y2)1/2{\displaystyle r=\left(x^{2}+y^{2}\right)^{1/2}} andΨ(r)=e1/(1r2)1{|r|<1}.{\displaystyle \Psi (r)=e^{-1/(1-r^{2})}\cdot \mathbf {1} _{\{|r|<1\}}.}

Inmathematical analysis, abump function (also called atest function) is afunctionf:RnR{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } on aEuclidean spaceRn{\displaystyle \mathbb {R} ^{n}} which is bothsmooth (in the sense of havingcontinuousderivatives of all orders) andcompactly supported. Theset of all bump functions withdomainRn{\displaystyle \mathbb {R} ^{n}} forms avector space, denotedC0(Rn){\displaystyle \mathrm {C} _{0}^{\infty }(\mathbb {R} ^{n})} orCc(Rn).{\displaystyle \mathrm {C} _{\mathrm {c} }^{\infty }(\mathbb {R} ^{n}).} Thedual space of this space endowed with a suitabletopology is the space ofdistributions.

Examples

[edit]
The 1d bump functionΨ(x).{\displaystyle \Psi (x).}

The functionΨ:RR{\displaystyle \Psi :\mathbb {R} \to \mathbb {R} } given byΨ(x)={exp(1x21), if |x|<1,0, if |x|1,{\displaystyle \Psi (x)={\begin{cases}\exp \left({\frac {1}{x^{2}-1}}\right),&{\text{ if }}|x|<1,\\0,&{\text{ if }}|x|\geq 1,\end{cases}}}

is an example of a bump function in one dimension. Note that the support of this function is the closed interval[1,1]{\displaystyle [-1,1]}. In fact, by definition ofsupport, we have thatsupp(Ψ):={xR:Ψ(x)0}¯=(1,1)¯{\displaystyle \operatorname {supp} (\Psi ):={\overline {\{x\in \mathbb {R} :\Psi (x)\neq 0\}}}={\overline {(-1,1)}}}, where the closure is taken with respect the Euclidean topology of the real line. The proof of smoothness follows along the same lines as for the related function discussed in theNon-analytic smooth function article. This function can be interpreted as theGaussian functionexp(y2){\displaystyle \exp \left(-y^{2}\right)} scaled to fit into the unit disc: the substitutiony2=1/(1x2){\displaystyle y^{2}={1}/{\left(1-x^{2}\right)}} corresponds to sendingx=±1{\displaystyle x=\pm 1} toy=.{\displaystyle y=\infty .}

A simple example of a (square) bump function inn{\displaystyle n} variables is obtained by taking the product ofn{\displaystyle n} copies of the above bump function in one variable, soΦ(x1,x2,,xn)=Ψ(x1)Ψ(x2)Ψ(xn).{\displaystyle \Phi (x_{1},x_{2},\dots ,x_{n})=\Psi (x_{1})\Psi (x_{2})\cdots \Psi (x_{n}).}

A radially symmetric bump function inn{\displaystyle n} variables can be formed by taking the functionΨn:RnR{\displaystyle \Psi _{n}:\mathbb {R} ^{n}\to \mathbb {R} } defined byΨn(x)=Ψ(|x|){\displaystyle \Psi _{n}(\mathbf {x} )=\Psi (|\mathbf {x} |)}. This function is supported on the unit ball centered at the origin.

For another example, take anh{\displaystyle h} that is positive on(c,d){\displaystyle (c,d)} and zero elsewhere, for example

h(x)={exp(1(xc)(dx)),c<x<d0,otherwise{\displaystyle h(x)={\begin{cases}\exp \left(-{\frac {1}{(x-c)(d-x)}}\right),&c<x<d\\0,&\mathrm {otherwise} \end{cases}}}.


Smooth transition functions

The non-analytic smooth functionf(x) considered in the article.

Consider the function

f(x)={e1xif x>0,0if x0,{\displaystyle f(x)={\begin{cases}e^{-{\frac {1}{x}}}&{\text{if }}x>0,\\0&{\text{if }}x\leq 0,\end{cases}}}

defined for everyreal numberx.


The smooth transitiong from 0 to 1 defined here.

The function

g(x)=f(x)f(x)+f(1x),xR,{\displaystyle g(x)={\frac {f(x)}{f(x)+f(1-x)}},\qquad x\in \mathbb {R} ,}

has a strictly positive denominator everywhere on the real line, henceg is also smooth. Furthermore,g(x) = 0 forx ≤ 0 andg(x) = 1 forx ≥ 1, hence it provides a smooth transition from the level 0 to the level 1 in theunit interval [0, 1]. To have the smooth transition in the real interval [a,b] witha < b, consider the function

Rxg(xaba).{\displaystyle \mathbb {R} \ni x\mapsto g{\Bigl (}{\frac {x-a}{b-a}}{\Bigr )}.}

For real numbersa <b <c <d, the smooth function

Rxg(xaba)g(dxdc){\displaystyle \mathbb {R} \ni x\mapsto g{\Bigl (}{\frac {x-a}{b-a}}{\Bigr )}\,g{\Bigl (}{\frac {d-x}{d-c}}{\Bigr )}}

equals 1 on the closed interval [b,c] and vanishes outside the open interval (a,d), hence it can serve as a bump function.

Caution must be taken since, as example, taking{a=1}<{b=c=0}<{d=1}{\displaystyle \{a=-1\}<\{b=c=0\}<\{d=1\}}, leads to:

q(x)=11+e12|x|x2|x|{\displaystyle q(x)={\frac {1}{1+e^{\frac {1-2|x|}{x^{2}-|x|}}}}}

which is not an infinitelydifferentiable function (so, is not "smooth"), so the constraintsa <b <c <d must be strictly fulfilled.

Some interesting facts about the function:

q(x,a)=11+ea(12|x|)x2|x|{\displaystyle q(x,a)={\frac {1}{1+e^{\frac {a(1-2|x|)}{x^{2}-|x|}}}}}

Are thatq(x,32){\displaystyle q\left(x,{\frac {\sqrt {3}}{2}}\right)} make smooth transition curves with "almost" constant slope edges (a bump function with true straight slopes is portrayed thisAnother example).

A proper example of a smooth Bump function would be:

u(x)={1,if x=0,0,if |x|1,11+e12|x|x2|x|,otherwise,{\displaystyle u(x)={\begin{cases}1,{\text{if }}x=0,\\0,{\text{if }}|x|\geq 1,\\{\frac {1}{1+e^{\frac {1-2|x|}{x^{2}-|x|}}}},{\text{otherwise}},\end{cases}}}

A proper example of a smooth transition function will be:

w(x)={11+e2x1x2xif 0<x<1,0if x0,1if x1,{\displaystyle w(x)={\begin{cases}{\frac {1}{1+e^{\frac {2x-1}{x^{2}-x}}}}&{\text{if }}0<x<1,\\0&{\text{if }}x\leq 0,\\1&{\text{if }}x\geq 1,\end{cases}}}

where could be noticed that it can be represented also throughHyperbolic functions:

11+e2x1x2x=12(1tanh(2x12(x2x))){\displaystyle {\frac {1}{1+e^{\frac {2x-1}{x^{2}-x}}}}={\frac {1}{2}}\left(1-\tanh \left({\frac {2x-1}{2(x^{2}-x)}}\right)\right)}

Existence of bump functions

[edit]
An illustration of the sets in the construction.

It is possible to construct bump functions "to specifications". Stated formally, ifK{\displaystyle K} is an arbitrarycompact set inn{\displaystyle n} dimensions andU{\displaystyle U} is anopen set containingK,{\displaystyle K,} there exists a bump functionϕ{\displaystyle \phi } which is1{\displaystyle 1} onK{\displaystyle K} and0{\displaystyle 0} outside ofU.{\displaystyle U.} SinceU{\displaystyle U} can be taken to be a very small neighborhood ofK,{\displaystyle K,} this amounts to being able to construct a function that is1{\displaystyle 1} onK{\displaystyle K} and falls off rapidly to0{\displaystyle 0} outside ofK,{\displaystyle K,} while still being smooth.

Bump functions defined in terms of convolution

The construction proceeds as follows. One considers a compact neighborhoodV{\displaystyle V} ofK{\displaystyle K} contained inU,{\displaystyle U,} soKVVU.{\displaystyle K\subseteq V^{\circ }\subseteq V\subseteq U.} Thecharacteristic functionχV{\displaystyle \chi _{V}} ofV{\displaystyle V} will be equal to1{\displaystyle 1} onV{\displaystyle V} and0{\displaystyle 0} outside ofV,{\displaystyle V,} so in particular, it will be1{\displaystyle 1} onK{\displaystyle K} and0{\displaystyle 0} outside ofU.{\displaystyle U.} This function is not smooth however. The key idea is to smoothχV{\displaystyle \chi _{V}} a bit, by taking theconvolution ofχV{\displaystyle \chi _{V}} with amollifier. The latter is just a bump function with a very small support and whose integral is1.{\displaystyle 1.} Such a mollifier can be obtained, for example, by taking the bump functionΦ{\displaystyle \Phi } from the previous section and performing appropriate scalings.

Bump functions defined in terms of a functionc:R[0,){\displaystyle c:\mathbb {R} \to [0,\infty )} with support(,0]{\displaystyle (-\infty ,0]}

An alternative construction that does not involve convolution is now detailed. It begins by constructing a smooth functionf:RnR{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } that is positive on a given open subsetURn{\displaystyle U\subseteq \mathbb {R} ^{n}} and vanishes off ofU.{\displaystyle U.}[1] This function's support is equal to the closureU¯{\displaystyle {\overline {U}}} ofU{\displaystyle U} inRn,{\displaystyle \mathbb {R} ^{n},} so ifU¯{\displaystyle {\overline {U}}} is compact, thenf{\displaystyle f} is a bump function.

Start with any smooth functionc:RR{\displaystyle c:\mathbb {R} \to \mathbb {R} } that vanishes on the negative reals and is positive on the positive reals (that is,c=0{\displaystyle c=0} on(,0){\displaystyle (-\infty ,0)} andc>0{\displaystyle c>0} on(0,),{\displaystyle (0,\infty ),} where continuity from the left necessitatesc(0)=0{\displaystyle c(0)=0}); an example of such a function isc(x):=e1/x{\displaystyle c(x):=e^{-1/x}} forx>0{\displaystyle x>0} andc(x):=0{\displaystyle c(x):=0} otherwise.[1] Fix an open subsetU{\displaystyle U} ofRn{\displaystyle \mathbb {R} ^{n}} and denote the usualEuclidean norm by{\displaystyle \|\cdot \|} (soRn{\displaystyle \mathbb {R} ^{n}} is endowed with the usualEuclidean metric). The following construction defines a smooth functionf:RnR{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } that is positive onU{\displaystyle U} and vanishes outside ofU.{\displaystyle U.}[1] So in particular, ifU{\displaystyle U} is relatively compact then this functionf{\displaystyle f} will be a bump function.

IfU=Rn{\displaystyle U=\mathbb {R} ^{n}} then letf=1{\displaystyle f=1} while ifU={\displaystyle U=\varnothing } then letf=0{\displaystyle f=0}; so assumeU{\displaystyle U} is neither of these. Let(Uk)k=1{\displaystyle \left(U_{k}\right)_{k=1}^{\infty }} be anopen cover ofU{\displaystyle U} by open balls where the open ballUk{\displaystyle U_{k}} has radiusrk>0{\displaystyle r_{k}>0} and centerakU.{\displaystyle a_{k}\in U.} Then the mapfk:RnR{\displaystyle f_{k}:\mathbb {R} ^{n}\to \mathbb {R} } defined byfk(x)=c(rk2xak2){\displaystyle f_{k}(x)=c\left(r_{k}^{2}-\left\|x-a_{k}\right\|^{2}\right)} is a smooth function that is positive onUk{\displaystyle U_{k}} and vanishes off ofUk.{\displaystyle U_{k}.}[1] For everykN,{\displaystyle k\in \mathbb {N} ,} letMk=sup{|pfkp1x1pnxn(x)| : xRn and p1,,pnZ satisfy 0pik and p=ipi},{\displaystyle M_{k}=\sup \left\{\left|{\frac {\partial ^{p}f_{k}}{\partial ^{p_{1}}x_{1}\cdots \partial ^{p_{n}}x_{n}}}(x)\right|~:~x\in \mathbb {R} ^{n}{\text{ and }}p_{1},\ldots ,p_{n}\in \mathbb {Z} {\text{ satisfy }}0\leq p_{i}\leq k{\text{ and }}p=\sum _{i}p_{i}\right\},}where thissupremum is not equal to+{\displaystyle +\infty } (soMk{\displaystyle M_{k}} is a non-negative real number) because(RnUk)Uk¯=Rn,{\displaystyle \left(\mathbb {R} ^{n}\setminus U_{k}\right)\cup {\overline {U_{k}}}=\mathbb {R} ^{n},} the partial derivatives all vanish (equal0{\displaystyle 0}) at anyx{\displaystyle x} outside ofUk,{\displaystyle U_{k},} while on the compact setUk¯,{\displaystyle {\overline {U_{k}}},} the values of each of the (finitely many) partial derivatives are (uniformly) bounded above by some non-negative real number.[note 1] The seriesf := k=1fk2kMk{\displaystyle f~:=~\sum _{k=1}^{\infty }{\frac {f_{k}}{2^{k}M_{k}}}}converges uniformly onRn{\displaystyle \mathbb {R} ^{n}} to a smooth functionf:RnR{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } that is positive onU{\displaystyle U} and vanishes off ofU.{\displaystyle U.}[1] Moreover, for any non-negative integersp1,,pnZ,{\displaystyle p_{1},\ldots ,p_{n}\in \mathbb {Z} ,}[1]p1++pnp1x1pnxnf = k=112kMkp1++pnfkp1x1pnxn{\displaystyle {\frac {\partial ^{p_{1}+\cdots +p_{n}}}{\partial ^{p_{1}}x_{1}\cdots \partial ^{p_{n}}x_{n}}}f~=~\sum _{k=1}^{\infty }{\frac {1}{2^{k}M_{k}}}{\frac {\partial ^{p_{1}+\cdots +p_{n}}f_{k}}{\partial ^{p_{1}}x_{1}\cdots \partial ^{p_{n}}x_{n}}}}where this series also converges uniformly onRn{\displaystyle \mathbb {R} ^{n}} (because wheneverkp1++pn{\displaystyle k\geq p_{1}+\cdots +p_{n}} then thek{\displaystyle k}th term'sabsolute value isMk2kMk=12k{\displaystyle \leq {\tfrac {M_{k}}{2^{k}M_{k}}}={\tfrac {1}{2^{k}}}}). This completes the construction.

As a corollary, given two disjoint closed subsetsA,B{\displaystyle A,B} ofRn,{\displaystyle \mathbb {R} ^{n},} the above construction guarantees the existence of smooth non-negative functionsfA,fB:Rn[0,){\displaystyle f_{A},f_{B}:\mathbb {R} ^{n}\to [0,\infty )} such that for anyxRn,{\displaystyle x\in \mathbb {R} ^{n},}fA(x)=0{\displaystyle f_{A}(x)=0} if and only ifxA,{\displaystyle x\in A,} and similarly,fB(x)=0{\displaystyle f_{B}(x)=0} if and only ifxB,{\displaystyle x\in B,} then the functionh := fAfA+fB:Rn[0,1]{\displaystyle h~:=~{\frac {f_{A}}{f_{A}+f_{B}}}:\mathbb {R} ^{n}\to [0,1]} is smooth and for anyxRn,{\displaystyle x\in \mathbb {R} ^{n},}h(x)=0{\displaystyle h(x)=0} if and only ifxA,{\displaystyle x\in A,}h(x)=1{\displaystyle h(x)=1} if and only ifxB,{\displaystyle x\in B,} and0<h(x)<1{\displaystyle 0<h(x)<1} if and only ifxAB.{\displaystyle x\not \in A\cup B.}[1] In particular,h(x)0{\displaystyle h(x)\neq 0} if and only ifxRnA,{\displaystyle x\in \mathbb {R} ^{n}\smallsetminus A,} so if in additionU:=RnA{\displaystyle U:=\mathbb {R} ^{n}\smallsetminus A} is relatively compact inRn{\displaystyle \mathbb {R} ^{n}} (whereAB={\displaystyle A\cap B=\varnothing } impliesBU{\displaystyle B\subseteq U}) thenh{\displaystyle h} will be a smooth bump function with support inU¯.{\displaystyle {\overline {U}}.}

Properties and uses

[edit]

While bump functions are smooth, theidentity theorem prohibits them from beinganalytic unless theyvanish identically. Bump functions are often used asmollifiers, as smoothcutoff functions, and to form smoothpartitions of unity. They are the most common class oftest functions used in analysis. The space of bump functions is closed under many operations. For instance, the sum, product, orconvolution of two bump functions is again a bump function, and anydifferential operator with smooth coefficients, when applied to a bump function, will produce another bump function.

If the boundaries of the Bump function domain isx,{\displaystyle \partial x,} to fulfill the requirement of "smoothness", it has to preserve the continuity of all its derivatives, which leads to the following requirement at the boundaries of its domain:limxx±dndxnf(x)=0, for all n0,nZ{\displaystyle \lim _{x\to \partial x^{\pm }}{\frac {d^{n}}{dx^{n}}}f(x)=0,\,{\text{ for all }}n\geq 0,\,n\in \mathbb {Z} }

TheFourier transform of a bump function is a (real) analytic function, and it can be extended to the wholecomplex plane: hence it cannot be compactly supported unless it is zero, since the only entire analytic bump function is the zero function (seePaley–Wiener theorem andLiouville's theorem). Because the bump function is infinitely differentiable, its Fourier transform must decay faster than any finite power of1/k{\displaystyle 1/k} for a large angular frequency|k|.{\displaystyle |k|.}[2] The Fourier transform of the particular bump functionΨ(x)=e1/(1x2)1{|x|<1}{\displaystyle \Psi (x)=e^{-1/(1-x^{2})}\mathbf {1} _{\{|x|<1\}}}from above can be analyzed by asaddle-point method, and decays asymptotically as|k|3/4e|k|{\displaystyle |k|^{-3/4}e^{-{\sqrt {|k|}}}}for large|k|.{\displaystyle |k|.}[3]

The integral of the bump functionΨ(x){\displaystyle \Psi (x)} is given byΨ(x)dx=e1/2(K1(12)K0(12)){\displaystyle \int _{-\infty }^{\infty }\Psi (x)dx=e^{-1/2}\left(K_{1}\left({\frac {1}{2}}\right)-K_{0}\left({\frac {1}{2}}\right)\right)}whereK1(x){\displaystyle K_{1}(x)} andK0(x){\displaystyle K_{0}(x)} are theModified Bessel functions of the second kind.[4]

See also

[edit]

Citations

[edit]
  1. ^The partial derivativespfkp1x1pnxn:RnR{\displaystyle {\frac {\partial ^{p}f_{k}}{\partial ^{p_{1}}x_{1}\cdots \partial ^{p_{n}}x_{n}}}:\mathbb {R} ^{n}\to \mathbb {R} } are continuous functions so the image of the compact subsetUk¯{\displaystyle {\overline {U_{k}}}} is a compact subset ofR.{\displaystyle \mathbb {R} .} The supremum is over all non-negative integers0p=p1++pnk{\displaystyle 0\leq p=p_{1}+\cdots +p_{n}\leq k} where becausek{\displaystyle k} andn{\displaystyle n} are fixed, this supremum is taken over only finitely many partial derivatives, which is whyMk<.{\displaystyle M_{k}<\infty .}
  1. ^abcdefgNestruev 2020, pp. 13–16.
  2. ^K. O. Mead and L. M. Delves, "On the convergence rate of generalized Fourier expansions,"IMA J. Appl. Math., vol. 12, pp. 247–259 (1973)doi:10.1093/imamat/12.3.247.
  3. ^Steven G. Johnson,Saddle-point integration ofC "bump" functions, arXiv:1508.04376 (2015).
  4. ^https://math.stackexchange.com/questions/145015/evaluate-definite-integral-int-11-exp1-x2-1-dx

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bump_function&oldid=1328883606"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp