Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

tert-Butyllithium

tert-Butyllithium is achemical compound with theformula (CH3)3CLi. As anorganolithium compound, it has applications inorganic synthesis since it is a strongbase, capable ofdeprotonating many carbon molecules, includingbenzene.tert-Butyllithium is available commercially as solutions in hydrocarbons (such as pentane); it is not usually prepared in the laboratory.

tert-Butyllithium
Skeletal formula of tert-butyllithium with all implicit hydrogens shown, and partial charges added
Skeletal formula oftert-butyllithium with all implicit hydrogens shown, and partial charges added
Names
Preferred IUPAC name
tert-Butyllithium[citation needed]
Identifiers
3D model (JSmol)
3587204
ChemSpider
ECHA InfoCard100.008.939Edit this at Wikidata
EC Number
  • 209-831-5
UN number3394
  • InChI=1S/C4H9.Li/c1-4(2)3;/h1-3H3; checkY
    Key: BKDLGMUIXWPYGD-UHFFFAOYSA-N checkY
  • [Li]C(C)(C)C
Properties
LiC
4
H
9
Molar mass64.055 g mol−1
AppearanceColorless solid
Density660 mg cm−3
Boiling point36 to 40 °C (97 to 104 °F; 309 to 313 K)
Reacts
Acidity (pKa)45–53
Hazards
GHS labelling:
GHS02: FlammableGHS05: CorrosiveGHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H225,H250,H260,H300,H304,H310,H314,H330,H336,H411
P210,P222,P223,P231+P232,P370+P378,P422
NFPA 704 (fire diamond)
Flash point−6.6 °C (20.1 °F; 266.5 K)
Related compounds
Related compounds
n-Butyllithium

sec-Butyllithium

Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Preparation

edit

tert-Butyllithium is produced commercially by treatingtert-butyl chloride withlithium metal. Its synthesis was first reported byR. B. Woodward in 1941.[1]

Structure and bonding

edit

Like other organolithium compounds,tert-butyllithium is acluster compound. Whereasn-butyllithium exists both as a hexamer and a tetramer,tert-butyllithium exists exclusively as a tetramer with acubane structure. Bonding in organolithium clusters involvessigma delocalization and significant Li−Li bonding.[2] Despite its complicated structure,tert-butyllithium is usually depicted in equations as a monomer.

The lithium–carbon bond intert-butyllithium is highly polarized, having about 40 percentionic character. The molecule reacts like acarbanion, as is represented by these tworesonance structures:[3]

 

Reactions

edit

tert-Butyllithium is renowned for deprotonation of carbon acids (C-H bonds). One example is the double deprotonation ofallyl alcohol.[4] Other examples are the deprotonation ofvinyl ethers.[5][6][7]

In combination withn-butyllithiium,tert-butylllithium monolithiatesferrocene.[8]tert-Butyllithium deprotonatesdichloromethane:[9]

H2CCl2 + RLi → HCCl2Li + RH

Similar ton-butyllithium,tert-butyllithium can be used forlithium–halogen exchange reactions.[10][11]

Solvent compatibility

edit

To minimize degradation by solvents, reactions involvingtert-butyllithium are often conducted at very low temperatures in special solvents, such as theTrapp solvent mixture.

More so than other alkyllithium compounds,tert-butyllithium reacts withethers.[2] Indiethyl ether, thehalf-life oftert-butyllithium is about 60 minutes at 0 °C. It is even more reactive towardtetrahydrofuran (THF); the half-life in THF solutions is about 40 minutes at −20 °C.[12] Indimethoxyethane, the half-life is about 11 minutes at −70 °C[13]

In this example, the reaction oftert-butyllithium with (THF) is shown:

 
 

Safety

edit

tert-butyllithium is apyrophoric substance, meaning that it spontaneously ignites on exposure to air.Air-free techniques are important so as to prevent this compound from reacting violently with oxygen and moisture:

t-BuLi + O2t-BuOOLi
t-BuLi + H2O →t-BuH + LiOH

The solvents used in common commercial preparations are themselves flammable. While it is possible to work with this compound usingcannula transfer, traces oftert-butyllithium at the tip of the needle or cannula may ignite and clog the cannula with lithium salts. While some researchers take this "pilot light" effect as a sign that the product is "fresh" and has not degraded due to time or improper storage/handling, others prefer to enclose the needle tip or cannula in a short glass tube, which is flushed with an inert gas and sealed at each end with septa.[14] Serious laboratory accidents involvingtert-butyllithium have occurred. For example, in 2008 a staff research assistant,Sheharbano Sangji, in the lab ofPatrick Harran[15] at theUniversity of California, Los Angeles, died after being severely burned by a fire ignited bytert-butyllithium.[16][17][18]

Large-scale reactions may lead to runaway reactions, fires, and explosions whentert-butyllithium is mixed with ethers such as diethyl ether, and tetrahydrofuran. The use of hydrocarbon solvents may be preferred.

See also

edit

References

edit
  1. ^Bartlett, Paul D.; C. Gardner Swain; Robert B. Woodward (1941). "t-Butyllithium".J. Am. Chem. Soc.63 (11):3229–3230.Bibcode:1941JAChS..63.3229B.doi:10.1021/ja01856a501.
  2. ^abElschenbroich, C. (2006).Organometallics. Weinheim: Wiley-VCH.ISBN 978-3-527-29390-2.
  3. ^K. P. C. Vollhardt, N. E. Schore (1999). "Organometallic reagents: sources of nucleophilic carbon for alcohol synthesis".Organic Chemistry : Structure And Function, 3rd edition.
  4. ^Danheiser, Rick L.; Fink, David M.; Okano, Kazuo; Tsai, Yeun-Min; Szczepanski, Steven W. (1988)."(1-Oxo-2-Propenyl)Trimethylsilane".Organic Syntheses.66: 14.doi:10.15227/orgsyn.066.0014.ISSN 2333-3553.
  5. ^Soderquist, John A. (1990)."Acetyltrimethylsilane".Organic Syntheses.68: 25.doi:10.15227/orgsyn.068.0025.ISSN 2333-3553.
  6. ^Tschantz, M. A.; Burgess, L. E.; Meyers, A. I. (1996)."4-Ketoundecanoic Acid".Organic Syntheses.73: 215.doi:10.15227/orgsyn.073.0215.ISSN 2333-3553.
  7. ^Jarowicki, Krzysztof; Kocienski, Philip J.; Qun, Liu (2002)."1,2-Metallate Rearrangement: (Z)-4-(2-Propenyl)-3-Octen-1-Ol".Organic Syntheses.79: 11.doi:10.15227/orgsyn.079.0011.ISSN 2333-3553.
  8. ^Busacca, Carl A.; Eriksson, Magnus C.; Haddad, Nizar; Han, Z. Steve; Lorenz, Jon C.; Qu, Bo; Zeng, Xingzhong; Senanayake, Chris H. (2013)."Practical Synthesis of Di-tert-Butylphosphinoferrocene".Organic Syntheses.90: 316.doi:10.15227/orgsyn.090.0316.ISSN 2333-3553.
  9. ^Matteson, Donald S.; Majumdar, Debesh (1983). "Homologation of Boronic Esters to α-Chloro Boronic Esters".Organometallics.2 (11):1529–1535.doi:10.1021/om50005a008.
  10. ^Smith, Adam P.; Savage, Scott A.; Love, J. Christopher; Fraser, Cassandra L. (2002)."Synthesis of 4-, 5-, and 6-Methyl-2,2'-bipyridine by a Negishi Cross-Coupling Strategy: 5-Methyl-2,2'-bipyridine".Organic Syntheses.78: 51.doi:10.15227/orgsyn.078.0051.ISSN 2333-3553.
  11. ^Amat, Mercedes; Hadida, Sabine; Sathyanarayana, Swargam; Bosch, Joan (1997)."Regioselective Synthesis of 3-Substituted Indoles: 3-Ethylindole".Organic Syntheses.74: 248.doi:10.15227/orgsyn.074.0248.ISSN 2333-3553.
  12. ^Stanetty, P; Koller, H.; Mihovilovic, M. (1992). "Directed ortho Lithiation of Phenylcarbamic acid 1,1-Dimethylethyl Ester (N-BOC-aniline). Revision and Improvements".Journal of Organic Chemistry.57 (25):6833–6837.doi:10.1021/jo00051a030.
  13. ^Fitt, J. J.; Gschwend, H. E. (1984). "Reaction of n-, sec-, and tert-butyllithium with dimethoxyethane (DME): a correction".Journal of Organic Chemistry.49:209–210.doi:10.1021/jo00175a056.
  14. ^Errington, R. M. (1997).Advanced practical inorganic and metalorganic chemistry(Google Books excerpt). London: Blackie Academic & Professional. pp. 47–48.ISBN 978-0-7514-0225-4.
  15. ^"Harran Lab: UCLA". Archived fromthe original on 2012-10-13. Retrieved2011-09-21.
  16. ^Jyllian Kemsley (2009-01-22)."Researcher Dies After Lab Fire".Chemical & Engineering News.
  17. ^Jyllian Kemsley (2009-04-03)."Learning From UCLA: Details of the experiment that led to a researcher's death prompt evaluations of academic safety practices".Chemical & Engineering News.
  18. ^Los Angeles Times, 2009-03-01

[8]ページ先頭

©2009-2025 Movatter.jp