Property of group subsets (mathematics)
Inmathematics , a nonempty subsetS of agroup G is said to besymmetric if it contains theinverses of all of its elements.
Inset notation a subsetS {\displaystyle S} of a groupG {\displaystyle G} is calledsymmetric if whenevers ∈ S {\displaystyle s\in S} then the inverse ofs {\displaystyle s} also belongs toS . {\displaystyle S.} So ifG {\displaystyle G} is written multiplicatively thenS {\displaystyle S} is symmetric if and only ifS = S − 1 {\displaystyle S=S^{-1}} whereS − 1 := { s − 1 : s ∈ S } . {\displaystyle S^{-1}:=\left\{s^{-1}:s\in S\right\}.} IfG {\displaystyle G} is written additively thenS {\displaystyle S} is symmetric if and only ifS = − S {\displaystyle S=-S} where− S := { − s : s ∈ S } . {\displaystyle -S:=\{-s:s\in S\}.}
IfS {\displaystyle S} is a subset of avector space thenS {\displaystyle S} is said to be asymmetric set if it is symmetric with respect to theadditive group structure of the vector space; that is, ifS = − S , {\displaystyle S=-S,} which happens if and only if− S ⊆ S . {\displaystyle -S\subseteq S.} Thesymmetric hull of a subsetS {\displaystyle S} is the smallest symmetric set containingS , {\displaystyle S,} and it is equal toS ∪ − S . {\displaystyle S\cup -S.} The largest symmetric set contained inS {\displaystyle S} isS ∩ − S . {\displaystyle S\cap -S.}
Sufficient conditions [ edit ] Arbitraryunions andintersections of symmetric sets are symmetric.
Anyvector subspace in a vector space is a symmetric set.
InR , {\displaystyle \mathbb {R} ,} examples of symmetric sets are intervals of the type( − k , k ) {\displaystyle (-k,k)} withk > 0 , {\displaystyle k>0,} and the setsZ {\displaystyle \mathbb {Z} } and( − 1 , 1 ) . {\displaystyle (-1,1).}
IfS {\displaystyle S} is any subset of a group, thenS ∪ S − 1 {\displaystyle S\cup S^{-1}} andS ∩ S − 1 {\displaystyle S\cap S^{-1}} are symmetric sets.
Anybalanced subset of a real or complexvector space is symmetric.
R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977. Rudin, Walter (1991).Functional Analysis . International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY:McGraw-Hill Science/Engineering/Math .ISBN 978-0-07-054236-5 .OCLC 21163277 .Narici, Lawrence; Beckenstein, Edward (2011).Topological Vector Spaces . Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press.ISBN 978-1584888666 .OCLC 144216834 . Schaefer, Helmut H. ; Wolff, Manfred P. (1999).Topological Vector Spaces .GTM . Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer.ISBN 978-1-4612-7155-0 .OCLC 840278135 .Trèves, François (2006) [1967].Topological Vector Spaces, Distributions and Kernels . Mineola, N.Y.: Dover Publications.ISBN 978-0-486-45352-1 .OCLC 853623322 .This article incorporates material from symmetric set onPlanetMath , which is licensed under theCreative Commons Attribution/Share-Alike License .
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Linear equations Matrices Matrix Matrix addition Matrix multiplication Basis transformation matrix Characteristic polynomial Spectrum Trace Eigenvalue, eigenvector and eigenspace Cayley–Hamilton theorem Jordan normal form Weyr canonical form Rank Inverse ,Pseudoinverse Adjugate ,Transpose Dot product Symmetric matrix ,Skew-symmetric matrix Orthogonal matrix ,Unitary matrix Hermitian matrix ,Antihermitian matrix Positive-(semi)definite Pfaffian Projection Spectral theorem Perron–Frobenius theorem Diagonal matrix ,Triangular matrix ,Tridiagonal matrix Block matrix Sparse matrix Hessenberg matrix ,Hessian matrix Vandermonde matrix Stochastic matrix ,Toeplitz matrix ,Circulant matrix ,Hankel matrix (0,1)-matrix List of matrices Matrix decompositions Relations and computations Vector spaces Structures Multilinear algebra Affine and projective Numerical linear algebra