Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Symmetric relation

From Wikipedia, the free encyclopedia
Type of binary relation
Transitive binary relations
SymmetricAntisymmetricConnectedWell-foundedHas joinsHas meetsReflexiveIrreflexiveAsymmetric
Total,
Semiconnex
Anti-
reflexive
Equivalence relationGreen tickYGreen tickY
Preorder(Quasiorder)Green tickY
Partial orderGreen tickYGreen tickY
Total preorderGreen tickYGreen tickY
Total orderGreen tickYGreen tickYGreen tickY
PrewellorderingGreen tickYGreen tickYGreen tickY
Well-quasi-orderingGreen tickYGreen tickY
Well-orderingGreen tickYGreen tickYGreen tickYGreen tickY
LatticeGreen tickYGreen tickYGreen tickYGreen tickY
Join-semilatticeGreen tickYGreen tickYGreen tickY
Meet-semilatticeGreen tickYGreen tickYGreen tickY
Strict partial orderGreen tickYGreen tickYGreen tickY
Strict weak orderGreen tickYGreen tickYGreen tickY
Strict total orderGreen tickYGreen tickYGreen tickYGreen tickY
SymmetricAntisymmetricConnectedWell-foundedHas joinsHas meetsReflexiveIrreflexiveAsymmetric
Definitions,
for alla,b{\displaystyle a,b} andS:{\displaystyle S\neq \varnothing :}
aRbbRa{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}}aRb and bRaa=b{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}}abaRb or bRa{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}}minSexists{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}}abexists{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}}abexists{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}}aRa{\displaystyle aRa}not aRa{\displaystyle {\text{not }}aRa}aRbnot bRa{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}}
Green tickY indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed
in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric,
is indicated byGreen tickY in the "Symmetric" column and in the "Antisymmetric" column, respectively.

All definitions tacitly require thehomogeneous relationR{\displaystyle R} betransitive: for alla,b,c,{\displaystyle a,b,c,} ifaRb{\displaystyle aRb} andbRc{\displaystyle bRc} thenaRc.{\displaystyle aRc.}
A term's definition may require additional properties that are not listed in this table.

Asymmetric relation is a type ofbinary relation. Formally, a binary relationR over asetX is symmetric if:[1]

a,bX(aRbbRa),{\displaystyle \forall a,b\in X(aRb\Leftrightarrow bRa),}

where the notationaRb means that(a,b) ∈R.

An example is the relation "is equal to", because ifa =b is true thenb =a is also true. IfRT represents theconverse ofR, thenR is symmetric if and only ifR =RT.[2]

Symmetry, along withreflexivity andtransitivity, are the three defining properties of anequivalence relation.[1]

Examples

[edit]

In mathematics

[edit]

Outside mathematics

[edit]
  • "is married to" (in most legal systems)
  • "is a fully biological sibling of"
  • "is ahomophone of"
  • "is a co-worker of"
  • "is a teammate of"

Relationship to asymmetric and antisymmetric relations

[edit]
Symmetric and antisymmetric relations

By definition, a nonempty relation cannot be both symmetric andasymmetric (where ifa is related tob, thenb cannot be related toa (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

Symmetric andantisymmetric (where the only waya can be related tob andb be related toa is ifa =b) are actually independent of each other, as these examples show.

Mathematical examples
SymmetricNot symmetric
Antisymmetricequalitydivides, less than or equal to
Not antisymmetriccongruence inmodular arithmetic// (integer division), most nontrivialpermutations
Non-mathematical examples
SymmetricNot symmetric
Antisymmetricis the same person as, and is marriedis the plural of
Not antisymmetricis a full biological sibling ofpreys on

Properties

[edit]
  • A symmetric andtransitive relation is alwaysquasireflexive.[a]
  • One way to count the symmetric relations onn elements, that in their binary matrix representation the upper right triangle determines the relation fully, and it can be arbitrary given, thus there are as many symmetric relations asn ×n binary upper triangle matrices, 2n(n+1)/2.[3]
Number ofn-element binary relations of different types
Elem­entsAnyTransitiveReflexiveSymmetricPreorderPartial orderTotal preorderTotal orderEquivalence relation
0111111111
1221211111
216134843322
3512171646429191365
465,5363,9944,0961,024355219752415
n2n22n(n−1)2n(n+1)/2n
k=0
k!S(n,k)
n!n
k=0
S(n,k)
OEISA002416A006905A053763A006125A000798A001035A000670A000142A000110

Note thatS(n,k) refers toStirling numbers of the second kind.

Notes

[edit]
  1. ^IfxRy, theyRx by symmetry, hencexRx by transitivity. The proof ofxRyyRy is similar.

References

[edit]
  1. ^abBiggs, Norman L. (2002).Discrete Mathematics. Oxford University Press. p. 57.ISBN 978-0-19-871369-2.
  2. ^"MAD3105 1.2".Florida State University Department of Mathematics. Florida State University. Retrieved30 March 2024.
  3. ^Sloane, N. J. A. (ed.)."Sequence A006125".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.

See also

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Symmetric_relation&oldid=1241079012"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp