State complexity is an area oftheoretical computer sciencedealing with the size of abstract automata,such as different kinds offinite automata.The classical result in the area is thatsimulating an-statenondeterministic finite automatonby adeterministic finite automatonrequires exactly states in the worst case.
Transformation between variants of finite automata
All these machines can accept exactly theregular languages.However, the size of different types of automatanecessary to accept the same language(measured in the number of their states)may be different.For any two types of finite automata,thestate complexity tradeoff between themis aninteger functionwhere is the least number of states in automata of the second typesufficient to recognize every languagerecognized by an-state automaton of the first type.The following results are known.
It is anopen problem whether all 2NFAs can be converted to 2DFAswith polynomially many states, i.e. whether there is a polynomialsuch that for every-state 2NFAthere exists a-state 2DFA.The problem was raised by Sakoda andSipser,[15]who compared it to theP vs. NP problem in thecomputational complexity theory.Berman andLingas[16] discovered a formal relation between this problemand theL vs.NL open problem.This relation was further elaborated byKapoutsis.[17]
State complexity of operations for finite automata
Given a binary regularity-preserving operation on languagesand a family of automata X (DFA, NFA, etc.),the state complexity ofis an integer function such that
for each m-state X-automaton A and n-state X-automaton B there is an-state X-automaton for, and
for all integers m, n there is an m-state X-automaton A and an n-state X-automaton B such that every X-automaton for must have at least states.
Analogous definition applies for operations with any number of arguments.
The first results on state complexity of operations for DFAswere published by Maslov[18]and by Yu, Zhuang andSalomaa.[19]Holzer andKutrib[20]pioneered the state complexity of operations on NFA.The known results for basic operations are listed below.
UFA: at least states, see Raskin,[39] and at most states, see Okhotin.[38]
2DFA: at least and at most states, see Kunc and Okhotin.[24]
2NFA: at least and at most states. The upper bound is by implementing the method of theImmerman–Szelepcsényi theorem, see Geffert, Mereghetti and Pighizzini.[30]
^Rabin, M. O.; Scott, D. (1959). "Finite Automata and Their Decision Problems".IBM Journal of Research and Development.3 (2):114–125.doi:10.1147/rd.32.0114.ISSN0018-8646.
^Lupanov, Oleg B. (1963). "A comparison of two types of finite sources".Problemy Kibernetiki.9:321–326.
^abLeung, Hing (2005). "Descriptional complexity of NFA of different ambiguity".International Journal of Foundations of Computer Science.16 (5):975–984.doi:10.1142/S0129054105003418.ISSN0129-0541.
^abSchmidt, Erik M. (1978).Succinctness of Description of Context-Free, Regular and Unambiguous Languages (Ph.D.). Cornell University.
^Jirásková, Galina; Pighizzini, Giovanni (2011). "Optimal simulation of self-verifying automata by deterministic automata".Information and Computation.209 (3):528–535.doi:10.1016/j.ic.2010.11.017.ISSN0890-5401.
^abcKapoutsis, Christos (2005). "Removing Bidirectionality from Nondeterministic Finite Automata".Mathematical Foundations of Computer Science 2005. Lecture Notes in Computer Science. Vol. 3618. pp. 544–555.doi:10.1007/11549345_47.ISBN978-3-540-28702-5.ISSN0302-9743.
^Shepherdson, J. C. (1959). "The Reduction of Two-Way Automata to One-Way Automata".IBM Journal of Research and Development.3 (2):198–200.doi:10.1147/rd.32.0198.ISSN0018-8646.
^Moore, F.R. (1971). "On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata".IEEE Transactions on Computers.C-20 (10):1211–1214.doi:10.1109/T-C.1971.223108.ISSN0018-9340.S2CID206618275.
^Birget, Jean-Camille (1993). "State-complexity of finite-state devices, state compressibility and incompressibility".Mathematical Systems Theory.26 (3):237–269.doi:10.1007/BF01371727.ISSN0025-5661.S2CID20375279.
^Fellah, A.; Jürgensen, H.; Yu, S. (1990). "Constructions for alternating finite automata∗".International Journal of Computer Mathematics.35 (1–4):117–132.doi:10.1080/00207169008803893.ISSN0020-7160.
^Ladner, Richard E.; Lipton, Richard J.; Stockmeyer, Larry J. (1984). "Alternating Pushdown and Stack Automata".SIAM Journal on Computing.13 (1):135–155.doi:10.1137/0213010.ISSN0097-5397.
^Sakoda, William J.; Sipser, Michael (1978). "Nondeterminism and the Size of Two Way Finite Automata".Proceedings of the tenth annual ACM symposium on Theory of computing - STOC '78. STOC 1978. ACM. pp. 275–286.doi:10.1145/800133.804357.
^Berman, Piotr; Lingas, Andrzej (1977).On the complexity of regular languages in terms of finite automata. Vol. Report 304. Polish Academy of Sciences.
^abcdeMaslov, A. N. (1970). "Estimates of the number of states of finite automata".Soviet Mathematics - Doklady.11:1373–1375.
^abcdefghijYu, Sheng; Zhuang, Qingyu; Salomaa, Kai (1994). "The state complexities of some basic operations on regular languages".Theoretical Computer Science.125 (2):315–328.doi:10.1016/0304-3975(92)00011-F.ISSN0304-3975.
^abGöös, Mika; Kiefer, Stefan; Yuan, Weiqiang (12 February 2022). "Lower Bounds for Unambiguous Automata via Communication Complexity".arXiv:2109.09155 [cs.FL].
^abcdKunc, Michal; Okhotin, Alexander (2011). "State Complexity of Union and Intersection for Two-way Nondeterministic Finite Automata".Fundamenta Informaticae.110 (1–4):231–239.doi:10.3233/FI-2011-540.
^Birget, Jean-Camille (1993). "Partial orders on words, minimal elements of regular languages, and state complexity".Theoretical Computer Science.119 (2):267–291.doi:10.1016/0304-3975(93)90160-U.ISSN0304-3975.
^Raskin, Michael (2018). "A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton".Proc. ICALP 2018. pp. 138:1–138:11.doi:10.4230/LIPIcs.ICALP.2018.138.
^Holzer, Markus; Kutrib, Martin (2009). "Nondeterministic finite automata — recent results on the descriptional and computational complexity".International Journal of Foundations of Computer Science.20 (4):563–580.doi:10.1142/S0129054109006747.ISSN0129-0541.
^Holzer, Markus; Kutrib, Martin (2011). "Descriptional and computational complexity of finite automata—A survey".Information and Computation.209 (3):456–470.doi:10.1016/j.ic.2010.11.013.ISSN0890-5401.
^Gao, Yuan; Moreira, Nelma; Reis, Rogério; Yu, Sheng (2015). "A Survey on Operational State Complexity".arXiv:1509.03254v1 [cs.FL].