Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

State complexity

From Wikipedia, the free encyclopedia

State complexity is an area oftheoretical computer sciencedealing with the size of abstract automata,such as different kinds offinite automata.The classical result in the area is thatsimulating ann{\displaystyle n}-statenondeterministic finite automatonby adeterministic finite automatonrequires exactly2n{\displaystyle 2^{n}} states in the worst case.

Transformation between variants of finite automata

[edit]

Finite automata can bedeterministic andnondeterministic,one-way (DFA, NFA)andtwo-way(2DFA, 2NFA).Other related classes areunambiguous (UFA),self-verifying (SVFA)andalternating (AFA) finite automata.These automata can also be two-way (2UFA, 2SVFA, 2AFA).

All these machines can accept exactly theregular languages.However, the size of different types of automatanecessary to accept the same language(measured in the number of their states)may be different.For any two types of finite automata,thestate complexity tradeoff between themis aninteger functionf{\displaystyle f}wheref(n){\displaystyle f(n)} is the least number of states in automata of the second typesufficient to recognize every languagerecognized by ann{\displaystyle n}-state automaton of the first type.The following results are known.

The 2DFA vs. 2NFA problem and logarithmic space

[edit]
Unsolved problem in computer science
Does everyn{\displaystyle n}-state 2NFA have an equivalentpoly(n){\displaystyle \operatorname {poly} (n)}-state 2DFA?
More unsolved problems in computer science

It is anopen problem whether all 2NFAs can be converted to 2DFAswith polynomially many states, i.e. whether there is a polynomialp(n){\displaystyle p(n)}such that for everyn{\displaystyle n}-state 2NFAthere exists ap(n){\displaystyle p(n)}-state 2DFA.The problem was raised by Sakoda andSipser,[15]who compared it to theP vs. NP problem in thecomputational complexity theory.Berman andLingas[16] discovered a formal relation between this problemand theL vs.NL open problem.This relation was further elaborated byKapoutsis.[17]

State complexity of operations for finite automata

[edit]

Given a binary regularity-preserving operation on languages{\displaystyle \circ }and a family of automata X (DFA, NFA, etc.),the state complexity of{\displaystyle \circ }is an integer functionf(m,n){\displaystyle f(m,n)} such that

Analogous definition applies for operations with any number of arguments.

The first results on state complexity of operations for DFAswere published by Maslov[18]and by Yu, Zhuang andSalomaa.[19]Holzer andKutrib[20]pioneered the state complexity of operations on NFA.The known results for basic operations are listed below.

Union

[edit]

If languageL1{\displaystyle L_{1}} requires m statesand languageL2{\displaystyle L_{2}} requires n states,how many states doesL1L2{\displaystyle L_{1}\cup L_{2}} require?

Intersection

[edit]

How many states doesL1L2{\displaystyle L_{1}\cap L_{2}} require?

Complementation

[edit]

If language L requires n statesthen how many states does itscomplement require?

Concatenation

[edit]

How many states doesL1L2={w1w2w1L1,w2L2}{\displaystyle L_{1}L_{2}=\{w_{1}w_{2}\mid w_{1}\in L_{1},w_{2}\in L_{2}\}} require?

Kleene star

[edit]

Reversal

[edit]

Finite automata over a unary alphabet

[edit]

State complexity of finite automata with a one-letter (unary) alphabet, pioneered byChrobak,[34] is different from the multi-letter case.

Letg(n)=eΘ(nlnn){\displaystyle g(n)=e^{\Theta ({\sqrt {n\ln n}})}} beLandau's function.

Transformation between models

[edit]

For a one-letter alphabet, transformations between different types of finite automata are sometimes more efficient than in the general case.

Union

[edit]

Intersection

[edit]

Complementation

[edit]

Concatenation

[edit]

Kleene star

[edit]

Further reading

[edit]

Surveys of state complexitywere written by Holzer and Kutrib[40][41]and by Gao et al.[42]

New research on state complexityis commonly presented at the annual workshops onDescriptional Complexity of Formal Systems (DCFS),at theConference on Implementation and Application of Automata (CIAA),and at various conferences ontheoretical computer science in general.

References

[edit]
  1. ^Rabin, M. O.; Scott, D. (1959). "Finite Automata and Their Decision Problems".IBM Journal of Research and Development.3 (2):114–125.doi:10.1147/rd.32.0114.ISSN 0018-8646.
  2. ^Lupanov, Oleg B. (1963). "A comparison of two types of finite sources".Problemy Kibernetiki.9:321–326.
  3. ^abLeung, Hing (2005). "Descriptional complexity of NFA of different ambiguity".International Journal of Foundations of Computer Science.16 (5):975–984.doi:10.1142/S0129054105003418.ISSN 0129-0541.
  4. ^abSchmidt, Erik M. (1978).Succinctness of Description of Context-Free, Regular and Unambiguous Languages (Ph.D.). Cornell University.
  5. ^Jirásková, Galina; Pighizzini, Giovanni (2011). "Optimal simulation of self-verifying automata by deterministic automata".Information and Computation.209 (3):528–535.doi:10.1016/j.ic.2010.11.017.ISSN 0890-5401.
  6. ^abcKapoutsis, Christos (2005). "Removing Bidirectionality from Nondeterministic Finite Automata".Mathematical Foundations of Computer Science 2005. Lecture Notes in Computer Science. Vol. 3618. pp. 544–555.doi:10.1007/11549345_47.ISBN 978-3-540-28702-5.ISSN 0302-9743.
  7. ^Shepherdson, J. C. (1959). "The Reduction of Two-Way Automata to One-Way Automata".IBM Journal of Research and Development.3 (2):198–200.doi:10.1147/rd.32.0198.ISSN 0018-8646.
  8. ^Moore, F.R. (1971). "On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata".IEEE Transactions on Computers.C-20 (10):1211–1214.doi:10.1109/T-C.1971.223108.ISSN 0018-9340.S2CID 206618275.
  9. ^Birget, Jean-Camille (1993). "State-complexity of finite-state devices, state compressibility and incompressibility".Mathematical Systems Theory.26 (3):237–269.doi:10.1007/BF01371727.ISSN 0025-5661.S2CID 20375279.
  10. ^Vardi, Moshe Y. (1989). "A note on the reduction of two-way automata to one-way automata".Information Processing Letters.30 (5):261–264.CiteSeerX 10.1.1.60.464.doi:10.1016/0020-0190(89)90205-6.ISSN 0020-0190.
  11. ^Chandra, Ashok K.; Kozen, Dexter C.; Stockmeyer, Larry J. (1981)."Alternation".Journal of the ACM.28 (1):114–133.doi:10.1145/322234.322243.ISSN 0004-5411.S2CID 238863413.
  12. ^Fellah, A.; Jürgensen, H.; Yu, S. (1990). "Constructions for alternating finite automata∗".International Journal of Computer Mathematics.35 (1–4):117–132.doi:10.1080/00207169008803893.ISSN 0020-7160.
  13. ^Ladner, Richard E.; Lipton, Richard J.; Stockmeyer, Larry J. (1984). "Alternating Pushdown and Stack Automata".SIAM Journal on Computing.13 (1):135–155.doi:10.1137/0213010.ISSN 0097-5397.
  14. ^Geffert, Viliam; Okhotin, Alexander (2014).Transforming Two-Way Alternating Finite Automata to One-Way Nondeterministic Automata. Lecture Notes in Computer Science. Vol. 8634. pp. 291–302.doi:10.1007/978-3-662-44522-8_25.ISBN 978-3-662-44521-1.ISSN 0302-9743.
  15. ^Sakoda, William J.; Sipser, Michael (1978). "Nondeterminism and the Size of Two Way Finite Automata".Proceedings of the tenth annual ACM symposium on Theory of computing - STOC '78. STOC 1978. ACM. pp. 275–286.doi:10.1145/800133.804357.
  16. ^Berman, Piotr; Lingas, Andrzej (1977).On the complexity of regular languages in terms of finite automata. Vol. Report 304. Polish Academy of Sciences.
  17. ^Kapoutsis, Christos A. (2014). "Two-Way Automata Versus Logarithmic Space".Theory of Computing Systems.55 (2):421–447.doi:10.1007/s00224-013-9465-0.S2CID 14808151.
  18. ^abcdeMaslov, A. N. (1970). "Estimates of the number of states of finite automata".Soviet Mathematics - Doklady.11:1373–1375.
  19. ^abcdefghijYu, Sheng; Zhuang, Qingyu; Salomaa, Kai (1994). "The state complexities of some basic operations on regular languages".Theoretical Computer Science.125 (2):315–328.doi:10.1016/0304-3975(92)00011-F.ISSN 0304-3975.
  20. ^abcdefghijkHolzer, Markus; Kutrib, Martin (2003)."Nondeterministic descriptional complexity of regular languages".International Journal of Foundations of Computer Science (Submitted manuscript).14 (6):1087–1102.doi:10.1142/S0129054103002199.ISSN 0129-0541.
  21. ^abGöös, Mika; Kiefer, Stefan; Yuan, Weiqiang (12 February 2022). "Lower Bounds for Unambiguous Automata via Communication Complexity".arXiv:2109.09155 [cs.FL].
  22. ^abcdJirásek, Jozef; Jirásková, Galina; Šebej, Juraj (2016).Operations on Unambiguous Finite Automata. Lecture Notes in Computer Science. Vol. 9840. pp. 243–255.doi:10.1007/978-3-662-53132-7_20.ISBN 978-3-662-53131-0.ISSN 0302-9743.
  23. ^abcdeJirásek, Jozef Štefan; Jirásková, Galina; Szabari, Alexander (2015).Computer Science -- Theory and Applications. Lecture Notes in Computer Science. Vol. 9139. pp. 231–261.doi:10.1007/978-3-319-20297-6_16.ISBN 978-3-319-20296-9.ISSN 0302-9743.
  24. ^abcdefghiKunc, Michal; Okhotin, Alexander (2012)."State complexity of operations on two-way finite automata over a unary alphabet".Theoretical Computer Science.449:106–118.doi:10.1016/j.tcs.2012.04.010.ISSN 0304-3975.
  25. ^abcdKunc, Michal; Okhotin, Alexander (2011). "State Complexity of Union and Intersection for Two-way Nondeterministic Finite Automata".Fundamenta Informaticae.110 (1–4):231–239.doi:10.3233/FI-2011-540.
  26. ^Birget, Jean-Camille (1993). "Partial orders on words, minimal elements of regular languages, and state complexity".Theoretical Computer Science.119 (2):267–291.doi:10.1016/0304-3975(93)90160-U.ISSN 0304-3975.
  27. ^Jirásková, Galina (2005)."State complexity of some operations on binary regular languages".Theoretical Computer Science.330 (2):287–298.doi:10.1016/j.tcs.2004.04.011., Theorem 5
  28. ^Raskin, Mikhail (2018)."A Superpolynomial Lower Bound for the Size of Non-Deterministic Complement of an Unambiguous Automaton".DROPS-IDN/V2/Document/10.4230/LIPIcs.ICALP.2018.138. Leibniz International Proceedings in Informatics (LIPIcs).107. Schloss-Dagstuhl - Leibniz Zentrum für Informatik: 138:1–138:11.doi:10.4230/LIPIcs.ICALP.2018.138.ISBN 978-3-95977-076-7.
  29. ^Indzhev, Emil; Kiefer, Stefan (1 August 2022)."On complementing unambiguous automata and graphs with many cliques and cocliques".Information Processing Letters.177 106270.arXiv:2105.07470.doi:10.1016/j.ipl.2022.106270.ISSN 0020-0190.S2CID 234741832. Retrieved29 May 2022.
  30. ^abGeffert, Viliam; Mereghetti, Carlo; Pighizzini, Giovanni (2007)."Complementing two-way finite automata".Information and Computation.205 (8):1173–1187.doi:10.1016/j.ic.2007.01.008.ISSN 0890-5401.
  31. ^abcJirásková, Galina; Okhotin, Alexander (2008).On the State Complexity of Operations on Two-Way Finite Automata. Lecture Notes in Computer Science. Vol. 5257. pp. 443–454.doi:10.1007/978-3-540-85780-8_35.ISBN 978-3-540-85779-2.ISSN 0302-9743.
  32. ^Mirkin, Boris G. (1966). "On dual automata".Cybernetics.2:6–9.doi:10.1007/bf01072247.S2CID 123186223.
  33. ^Leiss, Ernst (1985). "Succinct representation of regular languages by boolean automata II".Theoretical Computer Science.38:133–136.doi:10.1016/0304-3975(85)90215-4.ISSN 0304-3975.
  34. ^abcdChrobak, Marek (1986). "Finite automata and unary languages".Theoretical Computer Science.47:149–158.doi:10.1016/0304-3975(86)90142-8.ISSN 0304-3975.
  35. ^Kunc, Michal; Okhotin, Alexander (2011).Developments in Language Theory. Lecture Notes in Computer Science. Vol. 6795. pp. 324–336.CiteSeerX 10.1.1.616.8835.doi:10.1007/978-3-642-22321-1_28.ISBN 978-3-642-22320-4.ISSN 0302-9743.
  36. ^Mereghetti, Carlo; Pighizzini, Giovanni (2001). "Optimal Simulations between Unary Automata".SIAM Journal on Computing.30 (6):1976–1992.doi:10.1137/S009753979935431X.hdl:2434/35121.ISSN 0097-5397.
  37. ^abGeffert, Viliam; Mereghetti, Carlo; Pighizzini, Giovanni (2003). "Converting two-way nondeterministic unary automata into simpler automata".Theoretical Computer Science.295 (1–3):189–203.doi:10.1016/S0304-3975(02)00403-6.ISSN 0304-3975.
  38. ^abcdOkhotin, Alexander (2012)."Unambiguous finite automata over a unary alphabet".Information and Computation.212:15–36.doi:10.1016/j.ic.2012.01.003.ISSN 0890-5401.
  39. ^Raskin, Michael (2018). "A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton".Proc. ICALP 2018. pp. 138:1–138:11.doi:10.4230/LIPIcs.ICALP.2018.138.
  40. ^Holzer, Markus; Kutrib, Martin (2009). "Nondeterministic finite automata — recent results on the descriptional and computational complexity".International Journal of Foundations of Computer Science.20 (4):563–580.doi:10.1142/S0129054109006747.ISSN 0129-0541.
  41. ^Holzer, Markus; Kutrib, Martin (2011). "Descriptional and computational complexity of finite automata—A survey".Information and Computation.209 (3):456–470.doi:10.1016/j.ic.2010.11.013.ISSN 0890-5401.
  42. ^Gao, Yuan; Moreira, Nelma; Reis, Rogério; Yu, Sheng (2015). "A Survey on Operational State Complexity".arXiv:1509.03254v1 [cs.FL].
Retrieved from "https://en.wikipedia.org/w/index.php?title=State_complexity&oldid=1315702139"
Category:
Hidden category:

[8]ページ先頭

©2009-2026 Movatter.jp