Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Slime mold

Slime mold orslime mould is an informal name given to apolyphyletic assemblage of unrelatedeukaryotic organisms in theStramenopiles,Rhizaria,Discoba,Amoebozoa andHolomycotaclades. Most are near-microscopic; those in theMyxogastria form largerplasmodial slime molds visible to the naked eye.

Comatricha nigra (myxogastria) with developing fruiting bodies (sporangia)

The slime moldlife cycle includes a free-livingsingle-celled stage and the formation of spores. Spores are often produced in macroscopic multicellular ormultinucleate fruiting bodies that may be formed through aggregation or fusion; aggregation is driven bychemical signals calledacrasins. Slime molds contribute to thedecomposition of dead vegetation; some areparasitic.

Most slime molds are terrestrial and free-living, typically in damp shady habitats such as in or on the surface of rotting wood. Some myxogastrians andprotostelians are aquatic or semi-aquatic. Thephytomyxea are parasitic, living inside their planthosts. Geographically, slime molds arecosmopolitan in distribution. A small number of species occur in regions as dry as theAtacama Desert and as cold as theArctic; they are abundant in thetropics, especially inrainforests.

Slime molds have a variety of behaviors otherwise seen in animals with brains. Species such asPhysarum polycephalum have been used to simulate traffic networks. Some species have traditionally been eaten in countries such as Ecuador.

Evolution

edit

Taxonomic history

edit
 
Lycogala epidendrum was the first slime mold to be discussed scientifically, by Thomas Panckow in 1654.[1]

The first account of slime molds wasThomas Panckow [de]'s 1654 discussion ofLycogala epidendrum. He called itFungus cito crescentes, "a fast-growing fungus".[2][1]

German mycologistHeinrich Anton de Bary, in 1860 and 1887, classified theMyxomycetes (plasmodial slime molds) andAcrasieae (cellular slime molds) as Mycetozoa, a new class. He also introduced a "Doubtful Mycetozoa" section forPlasmodiophora (now inPhytomyxea) andLabyrinthula, emphasizing their distinction from plants and fungi.[3][4] In 1880, the French botanistPhilippe van Tieghem analyzed the two groups further.[4]

In 1868, the German biologistErnst Haeckel placed the Mycetozoa in a kingdom he namedProtista.[4] In 1885, the British zoologistRay Lankester grouped the Mycetozoa alongside theProteomyxa as part of the Gymnomyxa in the phylumProtozoa.[4]Arthur andGulielma Lister published monographs of the group in 1894, 1911, and 1925.[5][6]

In 1932 and 1960, the American mycologistGeorge Willard Martin argued that the slime molds evolved from fungi.[7][8] In 1956, the American biologistHerbert Copeland placed the Mycetozoa (the myxomycetes and plasmodiophorids) and the Sarkodina (the labyrinthulids and the cellular slime molds) in a phylum called Protoplasta, which he placed alongside the fungi and thealgae in a new kingdom, Protoctista.[4][9]

In 1969, the taxonomistR. H. Whittaker observed that slime molds were highly conspicuous and distinct within the Fungi, the group to which they were then classified. He concurred with Lindsay S. Olive's proposal to reclassify the Gymnomycota, which includes slime molds, as part of the Protista.[10] Whittaker placed three phyla, namely the Myxomycota, Acrasiomycota, and Labyrinthulomycota in a subkingdom Gymnomycota within the Fungi.[4] The same year, Martin and Alexopoulos published their influential textbookThe Myxomycetes.[6]

In 1975, Olive distinguished thedictyostelids and theacrasids as separate groups.[4] In 1992,David J. Patterson and M. L. Sogin proposed that the dictyostelids diverged before plants, animals, and fungi.[11]

Phylogeny

edit

Slime molds have little or no fossil history, as might be expected given that they are small and soft-bodied.[12] The grouping ispolyphyletic, consisting of multipleclades (emphasised in thephylogenetic tree) widely scattered across theEukaryotes. Paraphyletic groups are shown in quotation marks:[13][14]

Diversity

edit

Various estimates of the number of species of slime molds agree that there are around 1000 species, most beingMyxogastria. Collection ofenvironmental DNA gives a higher estimate, from 1200 to 1500 species.[6] These are diverse both taxonomically and in appearance, the largest and most familiar species being among the Myxogastria. The growth forms most commonly noticed are thesporangia, the spore-forming bodies, which are often roughly spherical; these may be directly on the surface, such as on rotting wood, or may be on a thin stalk which elevates the spores for release above the surface. Other species have the spores in a large mass, which may be visited by insects for food; they disperse spores when they leave.[15]

Macroscopic, plasmodial slime molds: Myxogastria

edit
Main article:Myxogastria

The Myxogastria orplasmodial slime molds are the onlymacroscopic scale slime molds; they gave the group its informal name, since for part of their life cycle they are slimy to the touch.[16] A myxogastrian consists of a large cell withthousands of nuclei within a single membrane without walls, forming asyncytium.[17] Most are smaller than a few centimeters, but some species may reach sizes up to several square meters, and in the case ofBrefeldia maxima, a mass of up to 20 kilograms (44 lb).[18][19][20]

Cellular slime molds: Dictyosteliida

edit
Main article:Dictyosteliida

TheDictyosteliida or cellular slime molds do not form hugecoenocytes like the Myxogastria; their amoebae remain individual for most of their lives as individual unicellularprotists, feeding on microorganisms. When food is depleted and they are ready to form sporangia, they form swarms. Theamoebae join up into a tiny multicellular slug which crawls to an open lit place and grows into a fruiting body, asorocarp. Some of the amoebae become spores to begin the next generation, but others sacrifice themselves to become a dead stalk, lifting the spores up into the air.[23][24]

Protosteliida

edit
Main article:Protosteliales

TheProtosteliida, a polyphyletic group, have characters intermediate between the previous two groups, but they are much smaller, the fruiting bodies only forming one to a fewspores.[25]

  • Ceratiomyxa is microscopic; each stalk is topped by only one or a very few spores.

Copromyxa

edit

Thelobosans, a paraphyletic group of amoebae, include theCopromyxa slime molds.[26][27]

Non-amoebozoan slime molds

edit

Among the non-amoebozoan slime molds are theAcrasids, which have sluglike amoebae. In locomotion, the amoebae'spseudopodia are eruptive, meaning that hemispherical bulges appear at the front.[28] ThePhytomyxea are obligateparasites, with hosts among the plants,diatoms,oomycetes, andbrown algae. They cause plant diseases likecabbage club root andpowdery scab.[29] TheLabyrinthulomycetes are marine slime nets, forming labyrinthine networks of tubes in which amoeba without pseudopods can travel.[30] TheFonticulida are cellular slime molds that form a fruiting body in a "volcano" shape.[31]

Distribution, habitats, and ecology

edit
 
Slime mold beetles such asSphindus dubius feed exclusively on slime molds.

Slime molds, with their small size and moist surface, live mostly in damp habitats including shaded forests, rotting wood, fallen or living leaves, and onbryophytes.[32][18] Most Myxogastria are terrestrial,[18] though some, likeDidymium aquatilis are aquatic,[33][34] andD. nigripes is semi-aquatic.[34] Myxogastria are not limited to wet regions; 34 species are known from Saudi Arabia, living on bark, in plant litter, and rotting wood, even indeserts.[35] They occur, too, in Arizona'sSonoran Desert (46 species), and in Chile's exceptionally dryAtacama Desert (24 species). In contrast, the semi-dryTehuacán-Cuicatlán Biosphere Reserve has 105 species, and Russia and Kazakhstan'sVolga river basin has 158 species.[35] Intropical rainforests of Latin America, species such as ofArcyria andDidymium are commonlyepiphyllous, growing on the leaves ofliverworts.[36]

The dictyostelids are mostly terrestrial.[37] OnChangbai Mountain in China, six species of dictyostelids were found in forest soils at elevations up to 2,038 m (6,686 ft), the highest recorded species there beingDictyostelium mucoroides.[38]The protostelids live mainly on dead plant matter, where they consume the spores ofbacteria,yeasts, andfungi.[37] They include some aquatic species, which live on dead plant parts submerged in ponds.[33] Cellular slime molds are most numerous in the tropics, decreasing withlatitude, but arecosmopolitan in distribution, occurring in soil even in the Arctic and the Antarctic.[39] In the Alaskantundra, the only slime molds are the dictyostelidsD. mucoroides andD. sphaerocephalum.[36]

The species ofCopromyxa arecoprophilous, feeding on dung.[27]

Some myxogastrians have their spores dispersed by animals. The slime mold flyEpicypta testata lay its eggs within the spore mass ofEnteridium lycoperdon, which the larvae feed on. These pupate, and the hatching adults carry and disperse spores that have stuck to them.[21] While various insects consume slime molds,Sphindidae slime mold beetles, both larvae and adults, exclusively feed on them.[40]

Life cycle

edit

Plasmodial slime molds

edit
 
Long strands ofPhysarum polycephalum streaming along as it forms aplasmodium with many nuclei without individual cell membranes

Plasmodial slime molds begin life asamoeba-likecells. These unicellular amoebae are commonlyhaploid and feed on small prey such asbacteria, yeast cells, and fungal spores byphagocytosis, engulfing them with itscell membrane. These amoebae can mate if they encounter the correctmating type and formzygotes that then grow intoplasmodia. These contain manynuclei withoutcell membranes between them, and can grow to meters in size. The speciesFuligo septica is often seen as a slimy yellow network in and on rotting logs. The amoebae and the plasmodia engulf microorganisms.[41] The plasmodium grows into an interconnected network of protoplasmic strands.[42] Within each protoplasmic strand, the cytoplasmic contents rapidly stream, periodically reversing direction. The streaming protoplasm within a plasmodial strand can reach speeds of up to 1.35 mm per second inPhysarum polycephalum, the fastest for any microorganism.[43]

 
Life cycle of a plasmodial slime mold. Haploid gametes undergo sexual fusion to form a diploid cell. Its nucleus divides (but the cell does not) to form a multinucleate plasmodium.Meiosis halves the number ofchromosomes to form haploid cells with just one nucleus.[44]

Slime molds areisogamous, which means that theirgametes (reproductive cells) are all the same size, unlike the eggs and sperms of animals.[45]Physarum polycephalum has threegenes involved in reproduction:matA andmatB, with thirteen variants each, andmatC with three variants. Each reproductively mature slime mold isdiploid, meaning that it contains two copies of each of the three reproductive genes.[46] WhenP. polycephalum is ready to make its reproductive cells, it grows a bulbous extension of its body to contain them.[47] Each cell has a random combination of the genes that the slime mold contains within itsgenome. Therefore, it can create cells of up to eight different gene types. Released cells then independently seek another compatible cell for fusion. Other individuals ofP. polycephalum may contain different combinations of thematA,matB, andmatC genes, allowing over 500 possible variations. It is advantageous for organisms with this type of reproductive cell to have many mating types because the likelihood of the cells finding a partner is greatly increased, and the risk ofinbreeding is drastically reduced.[46]

Cellular slime molds

edit
Further information:Dictyostelid

The cellular slime molds are a group of approximately 150 described species. They occur primarily in the humus layer of forest soils[48] and feed on bacteria but also are found in animal dung and agricultural fields. They exist as single-celled organisms while food is plentiful. When food is in short supply, many of the single-celled amoebae congregate and start moving as a single body, called a 'slug'. The ability of the single celled organisms to aggregate into multicellular forms are why they are also called the social amoebae. In this state they are sensitive to airborne chemicals and can detect food sources. They readily change the shape and function of parts, and may form stalks that produce fruiting bodies, releasing countless spores, light enough to be carried on the wind or on passing animals.[23] The cellular slime moldDictyostelium discoideum has many different mating types. When this organism has entered the stage of reproduction, it releases a chemical attractant.[49] When it comes time for the cells to fuse,Dictyostelium discoideum has mating types of its own that dictate which cells are compatible with each other. There are at least eleven mating types;macrocysts form after cell contact between compatible mating types.[50]

Chemical signals

edit
 
The firstacrasin to be discovered wascyclic AMP, a small molecule common in cells. Acrasins are signals that cause cellular slime mold amoebae to aggregate.[51]

The chemicals that aggregate cellular slime molds are small molecules calledacrasins; motion towards a chemical signal is calledchemotaxis. The first acrasin to be discovered wascyclic adenosine monophosphate (cyclic AMP), a common cell signaling molecule, inDictyostelium discoideum. During the aggregation phase of their life cycle,Dictyostelium discoideum amoebae communicate with each other using traveling waves of cyclic AMP.[51][52][53] There is an amplification of cyclic AMP when they aggregate.[54] Pre-stalk cells move toward cyclic AMP, but pre-spore cells ignore the signal.[55] Other acrasins exist; the acrasin forPolysphondylium violaceum, purified in 1983, is thedipeptide glorin.[56]Calcium ions too serve to attract slime mold amoebae, at least at short distances. It has been suggested that acrasins may be taxon-specific, since specificity is required to form an aggregation of genetically similar cells. Many dictyostelid species indeed do not respond to cyclic AMP, but as of 2023 their acrasins remained unknown.[57]

Study

edit

Use in research and teaching

edit

The practical study of slime molds was facilitated by the introduction of the "moist culture chamber" by H. C. Gilbert andG. W. Martin in 1933.[58] Slime molds can be used to teachconvergent evolution, as the habit of forming a stalk with a sporangium that can release spores into the air, off the ground, has evolved repeatedly, such as in myxogastria (eukaryotes) and in myxobacteria (prokaryotes).[59] Further, both the (macroscopic) dictyostelids and the (microscopic) protostelids have a phase with motile amoebae and a phase with a stalk; in the protostelids, the stalk is tiny, supporting just one spore, but the logic of airborne spore dispersal is the same.[59]

O. R. Collins showed that the slime moldDidymium iridis had two strains (+ and −) of cells, equivalent to gametes, that these could formimmortal cell lines inculture, and that the system was controlled byalleles of a single gene. This made the species amodel organism for exploring incompatibility, asexual reproduction, and mating types.[59]

Biochemicals

edit

Slime molds have been studied for their production of unusual organic compounds, includingpigments,antibiotics, andanti-cancer drugs.[59] Pigments includenaphthoquinones, physarochrome A, and compounds of tetramic acid.Bisindolylmaleimides produced byArcyria denudata include somephosphorescent compounds.[60] The sporophores (fruiting bodies) ofArcyria denudata are colored red by arcyriaflavins A–C, which contain an unusual indolo[2,3-a]carbazolealkaloid ring.[61] By 2022, more than 100 pigments had been isolated from slime molds, mostly from sporophores. It has been suggested that the many yellow-to-red pigments might be useful incosmetics.[15] Some 42% of patients withseasonal allergic rhinitis reacted to myxogastrian spores, so the spores may contribute significantly as airborneallergens.[62]

Computation

edit

Slime molds share some similarities with neural systems in animals.[63] The membranes of both slime molds and neural cells contain receptor sites, which alter electrical properties of the membrane when it is bound.[64] Therefore, some studies on the early evolution of animal neural systems are inspired by slime molds.[65][66][67] When a slime mold mass or mound is physically separated, the cells find their way back to re-unite. Studies onPhysarum polycephalum have even shown the organism to have an ability to learn and predict periodic unfavorable conditions in laboratory experiments.[68]John Tyler Bonner, a professor of ecology known for his studies of slime molds, argues that they are "no more than a bag of amoebae encased in a thin slime sheath, yet they manage to have various behaviors that are equal to those of animals who possess muscles and nerves with ganglia – that is, simple brains."[69]

The slime moldalgorithm is ameta-heuristic algorithm, based on the behavior of aggregated slime molds as they stream in search of food. It is described as a simple, efficient, and flexible way of solvingoptimization problems, such as finding theshortest path betweennodes in a network. However, it can become trapped in alocal optimum.[70]

Toshiyuki Nakagaki and colleagues studied slime molds and their abilities to solve mazes by placing nodes at two points separated by a maze of plastic film. The mold explored all possible paths and solved it for the shortest path.[71]

Traffic system inspirations

edit
 
Physarum polycephalum network grown in a period of 26 hours (6 stages shown) to simulate greaterTokyo's rail network[72]

Atsushi Tero and colleagues grewPhysarum in a flat wet dish, placing the mold in a central position representing Tokyo, and oat flakes surrounding it corresponding to the locations of other major cities in the Greater Tokyo Area. AsPhysarum avoids bright light, light was used to simulate mountains, water and other obstacles in the dish. The mold first densely filled the space with plasmodia, and then thinned the network to focus on efficiently connected branches. The network closely resembledTokyo's rail system.[72][73]P. polycephalum was used in experimental laboratory approximations of motorway networks of 14 geographical areas: Australia, Africa, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, the Netherlands, UK and US.[74][75][76] The filamentary structure ofP. polycephalum forming a network to food sources is similar to the large scalegalaxy filament structure of theuniverse. This observation has led astronomers to use simulations based on the behaviour of slime molds to inform their search fordark matter.[77][78]

Used as food

edit

In central Mexico, thefalse puffballEnteridium lycoperdon was traditionally used as food; it was one of the species which mushroom-collectors orhongueros gathered on trips into the forest in the rainy season. One of its local names is "cheese mushroom", so called for its texture and flavor when cooked. It was salted, wrapped in amaize leaf, and baked in the ashes of a campfire; or boiled and eaten with maizetortillas.Fuligo septica was similarly collected in Mexico, cooked with onions and peppers and eaten in a tortilla. In Ecuador,Lycogala epidendrum was called "yakich" and eaten raw as an appetizer.[79]

In popular culture

edit

Oscar Requejo and N. Floro Andres-Rodriguez suggest thatFuligo septica may have inspiredIrvin Yeaworth's 1958 filmThe Blob, in which a giant amoeba from space sets about engulfing people in a small American town.[79]

See also

edit
  • Swarming motility – rapid and coordinated translocation of a bacterial population across solid or semi-solid surfacesPages displaying wikidata descriptions as a fallback
  • Water mold – Fungus-like eukaryotic microorganismPages displaying short descriptions of redirect targets

References

edit
  1. ^abAlexopoulos, Constantine J.; Mims, Charles W.; Blackwell, Meredith M. (1996).Introductory Mycology (4th ed.). New York: John Wiley and Sons. p. 776.ISBN 978-0-471-52229-4.
  2. ^Panckow, Thomas (1654).Herbarium Portatile, Oder Behendes Kräuter und GewächsBuch. Berlin.
  3. ^de Bary, A. (1860). "XXV.—On the Mycetozoa".Annals and Magazine of Natural History.5 (28):233–243.doi:10.1080/00222936008697211.ISSN 0374-5481.
  4. ^abcdefgOlive, Lindsay S.; Stoianovitch, Carmen (technical assistance) (1975).The Mycetozoans.Academic Press. pp. 1–7.ISBN 978-0-1252-6250-7.
  5. ^Lister, Arthur; Lister, Gulielma (1911).A monograph of the Mycetozoa : a descriptive catalogue of the species in the Herbarium of the British Museum. London: Printed by order of the Trustees of the British Museum.doi:10.5962/bhl.title.21191.
  6. ^abcSchnittler, M.; Mitchell, D. W. (2001) [2000]. "Species Diversity in Myxomycetes based on the morphological species concept – a critical examination". In Nowotny, Wolfgang; Aescht, Erna (eds.).Wolfsblut und Lohblüte – Lebensformen zwischen Tier und Pflanze [Wolves' Blood and Tan Blossom – Life forms between animals and plants]. Ausstellung im Biologiezentrum des OÖ. Landesmuseums. Vol. 73. OÖ Landes-Kultur. pp. 39–53.ISBN 978-3854740568.
  7. ^Martin, G. W. (1932). "Systematic Position of the Slime Molds and Its Bearing on the Classification of the Fungi".Botanical Gazette.93 (4):421–335.doi:10.1086/334272.JSTOR 2471449.S2CID 84506715.
  8. ^Martin, G. W. (1932). "The Systematic Position of the Myxomycetes".Mycologia.93 (4):119–129.doi:10.2307/3756254.JSTOR 3756254.
  9. ^Copeland, H. F. (1956).The Classification of Lower Organisms. Palo Alto, California: Pacific Books.
  10. ^Whittaker, R. H. (16 May 1969). "Response: Reassignment of Gymnomycota".Science.164 (3881). American Association for the Advancement of Science (AAAS): 857.doi:10.1126/science.164.3881.857.b.ISSN 0036-8075.S2CID 239845755.
  11. ^Patterson, D. J.; Sogin, M. L. (1992). "Eukaryote origins and protistan diversity".The origin and evolution of prokaryotic and eukaryotic cells. New Jersey: World Scientific. pp. 13–46.ISBN 978-9-8102-1262-9.
  12. ^"Introduction to the 'Slime Molds'".University of California Museum of Paleontology.
  13. ^Vallverdú, Jordi; et al. (2018). "Slime mould: the fundamental mechanisms of biological cognition".BioSystems.165 (165):57–70.arXiv:1712.00414.Bibcode:2018BiSys.165...57V.doi:10.1016/j.biosystems.2017.12.011.PMID 29326068.S2CID 3909678.
  14. ^Baldauf, S.L.; Doolittle, W.F. (October 1997)."Origin and Evolution of the Slime Molds (Mycetozoa)".PNAS.94 (22):12007–120012.Bibcode:1997PNAS...9412007B.doi:10.1073/pnas.94.22.12007.PMC 23686.PMID 9342353.
  15. ^abStoyneva-Gärtner, Maya; Uzunov, Blagoy; Androv, Miroslav; Ivanov, Kristian; Gärtner, Georg (21 December 2022)."Potential of Slime Molds as a Novel Source for the Cosmetics Industry".Cosmetics.10 (1). MDPI AG: 3.doi:10.3390/cosmetics10010003.ISSN 2079-9284.
  16. ^Adamatzky, Andrew (2016).Advances in Physarum Machines: Sensing and Computing with Slime Mould. Springer. p. 4.ISBN 978-3-319-26662-6.
  17. ^Ples, Marek (2023-11-11)."Lab Snapshots by Marek Ples; Microbiology - The biology on a different level".weirdscience.eu. Retrieved2023-07-02.
  18. ^abcIng, B. (1999).The myxomycetes of Britain and Ireland: an identification handbook. Slough, England: Richmond Publishing. pp. 4, 9.ISBN 978-0-85546-251-2.
  19. ^Nannenga-Bremekamp, N.E. (1974).De Nederlandse Myxomyceten. Zuthpen: Koninklijke Nederlandse Natuurhistorische Vereniging.ISBN 978-90-03-93130-6.
  20. ^Zhulidov, Daniel A.; Robarts, Richard D.; Zhulidov, Alexander V.; Zhulidova, Olga V.; Markelov, Danila A.; Rusanov, Viktor A.; Headley, John V. (2002). "Zinc accumulation by the slime moldFuligo septica (L.) Wiggers in the former Soviet Union and North Korea".Journal of Environmental Quality.31 (3):1038–1042.Bibcode:2002JEnvQ..31.1038Z.doi:10.2134/jeq2002.1038.PMID 12026071.
  21. ^abStephenson, Steven L. (15 June 2000).Myxomycetes. Portland: Timber Press. p. 65.ISBN 978-0-88192-439-8.
  22. ^Krivomaz, Т. І.; Michaud, A.; Minter, D. W. (2012)."Metatrichia vesparium"(PDF).
  23. ^abJacobson, R. (April 5, 2012)."Slime Molds: No Brains, No Feet, No Problem". PBS Newshour.
  24. ^Kin, K.; Schaap, P. (March 2021)."Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas".Genes.12 (4): 487.doi:10.3390/genes12040487.PMC 8067170.PMID 33801615.
  25. ^Fiore-Donno, Anna Maria; Nikolaev, Sergey I.; Nelson, Michaela; Pawlowski, Jan;Cavalier-Smith, Thomas; Baldauf, Sandra L. (January 2010). "Deep Phylogeny and Evolution of Slime Moulds (Mycetozoa)".Protist.161 (1):55–70.doi:10.1016/j.protis.2009.05.002.PMID 19656720.
  26. ^"Species:Copromyxa arborescens M. Nesom & L. S. Olive".The Eumycetozoan Project Database.University of Arkansas. RetrievedJune 26, 2010.
  27. ^abBrown, Matthew W.; Silberman, Jeffrey D.; Spiegel, Frederick W. (2011). "'Slime Molds' among the Tubulinea (Amoebozoa): Molecular Systematics and Taxonomy of Copromyxa".Protist.162 (2):277–287.doi:10.1016/j.protis.2010.09.003.ISSN 1434-4610.PMID 21112814.
  28. ^Brown, Matthew W.; Silberman, Jeffrey D.; Spiegel, Frederick W. (2012). "A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata)".European Journal of Protistology.48 (2). Elsevier BV:103–123.doi:10.1016/j.ejop.2011.10.001.ISSN 0932-4739.PMID 22154141.
  29. ^Neuhauser, Sigrid; Kirchmair, Martin; Bulman, Simon; Bass, David (2014)."Cross-kingdom host shifts of phytomyxid parasites".BMC Evolutionary Biology.14 (1): 33.Bibcode:2014BMCEE..14...33N.doi:10.1186/1471-2148-14-33.PMC 4016497.PMID 24559266.
  30. ^Tsui, Clement K. M.; Marshall, Wyth; Yokoyama, Rinka; Honda, Daiske; Lippmeier, J Casey; Craven, Kelly D.; Peterson, Paul D.; Berbee, Mary L. (January 2009). "Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding".Molecular Phylogenetics and Evolution.50 (1):129–40.doi:10.1016/j.ympev.2008.09.027.PMID 18977305.
  31. ^Deasey, Mary C.; Olive, Lindsay S. (July 1981). "Role of Golgi Apparatus in Sorogenesis by the Cellular Slime Mold Fonticula alba".Science.213 (4507):561–563.Bibcode:1981Sci...213..561D.doi:10.1126/science.213.4507.561.PMID 17794844.
  32. ^Glimn-Lacy, Janice; Kaufman, Peter B. (2006). "Slime Molds".Botany Illustrated. Springer US. p. 45.doi:10.1007/0-387-28875-9_45.ISBN 978-0-387-28870-3.
  33. ^abLindley, Lora A.; Stephenson, Steven L.; Spiegel, Frederick W. (1 July 2007). "Protostelids and myxomycetes isolated from aquatic habitats".Mycologia.99 (4):504–509.doi:10.3852/mycologia.99.4.504.PMID 18065001.
  34. ^abHoppe, T.; Kutschera, U. (27 August 2022)."Phenotypic plasticity in plasmodial slime molds and molecular phylogeny of terrestrial vs. aquatic species".Theory in Biosciences.141 (3). Springer:313–319.doi:10.1007/s12064-022-00375-9.ISSN 1431-7613.PMC 9474427.PMID 36029433.
  35. ^abAmeen, Fuad; Almansob, Abobakr; Al-Sabri, Ahmed (2020). "Records of slime molds (Myxomycetes) from deserts and other arid areas of Saudi Arabia".Sydowia (72). Verlag Ferdinand Berger & Söhne:171–177.doi:10.12905/0380.sydowia72-2020-0171.ISSN 0082-0598.
  36. ^abGlime, J. M. (2019). "Slime Molds: Ecology and Habitats – Lesser Habitats".Bryophyte Ecology. Vol. 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
  37. ^abSpiegel, Frederick W.; Steven L. Stephenson; Harold W. Keller; Donna L Moore; James C. Cavendar (2004). "Mycetozoans". In Gregory M. Mueller; Gerald F. Bills; Mercedes S. Foster (eds.).Biodiversity of fungi: inventory and monitoring methods. New York: Elsevier Academic Press. pp. 547–576.ISBN 0125095511.
  38. ^Zou, Yue; Hou, Jiangan; Guo, Songning; Li, Changtian; Li, Zhuang; Stephenson, Steven L.; Pavlov, Igor N.; Liu, Pu; Li, Yu (26 October 2022)."Diversity of Dictyostelid Cellular Slime Molds, Including Two Species New to Science, in Forest Soils of Changbai Mountain, China".Microbiology Spectrum.10 (5). American Society for Microbiology: e0240222.doi:10.1128/spectrum.02402-22.ISSN 2165-0497.PMC 9620775.PMID 36190423.
  39. ^Bonner, John Tyler (7 November 2015)."The Evolution of Evolution: Seen through the Eyes of a Slime Mold".BioScience.65 (12). Oxford University Press:1184–1187.doi:10.1093/biosci/biv154.ISSN 1525-3244.
  40. ^Li, Yan-Da; Tihelka, Erik; Liu, Zhen-Hua; Huang, Di-Ying; Cai, Chen-Yang (23 November 2021)."New mid-Cretaceous cryptic slime mold beetles and the early evolution of Sphindidae (Coleoptera: Cucujoidea)".Arthropod Systematics & Phylogeny.79:587–597.doi:10.3897/asp.79.e72724.ISSN 1864-8312.
  41. ^Ling, H. (2012)."Myxomycetes: Overlooked Native Plants".The Native Plant Society of New Jersey. Archived fromthe original on 9 June 2015. Retrieved29 May 2018.
  42. ^Chimileski, Scott; Kolter, Roberto."Life at the Edge of Sight".www.hup.harvard.edu. Harvard University Press. Archived fromthe original on October 19, 2023. Retrieved2018-01-26.
  43. ^Alexopoulos, C.J. (1962).Introductory Mycology (Second ed.). New York, N.Y.: John Wiley and Sons. p. 78.
  44. ^Dee, Jennifer (1960). "A Mating-type System in an Acellular Slime-mould".Nature.185 (4715):780–781.Bibcode:1960Natur.185..780D.doi:10.1038/185780a0.S2CID 4206149.
  45. ^Moskvitch, Katia (9 July 2018)."Slime Molds Remember – but Do They Learn?".Quanta Magazine. Retrieved2019-11-02.
  46. ^abJudson, Olivia (2002).Dr. Tatiana's Sex Advice To All Creation. New York: Henry Holt and Company. pp. 187–193.ISBN 978-0-8050-6332-5.
  47. ^Renner, B. (2006)."Slime Mold Reproduction".BioWeb. University of Wisconsin System. Archived fromthe original on November 2, 2019. Retrieved2019-11-02.
  48. ^Cavender, James C.; Raper, Kenneth B. (March 1965)."The Acrasieae in Nature. Ii. Forest Soil as a Primary Habitat".American Journal of Botany.52 (3):297–302.doi:10.1002/j.1537-2197.1965.tb06789.x.ISSN 0002-9122.
  49. ^Bonner, J. T. (2009).The Social Amoebae: The Biology of Cellular Slime Molds. Princeton University Press.ISBN 978-0-691-13939-5.JSTOR j.ctt7s6qz.
  50. ^Erdos, Gregory W.; Raper, Kenneth B.; Vogen, Linda K. (June 1973)."Mating Types and Macrocyst Formation inDictyostelium discoideum".Proceedings of the National Academy of Sciences of the United States of America.70 (6):1828–1830.Bibcode:1973PNAS...70.1828E.doi:10.1073/pnas.70.6.1828.PMC 433606.PMID 16592095.
  51. ^abNestle, Marion; Sussman, Maurice (August 1972). "The effect of cyclic AMP on morphogernesis and enzyme accumulation in Dictyostelium discoideum".Developmental Biology.28 (4):545–554.doi:10.1016/0012-1606(72)90002-4.PMID 4340352.
  52. ^Levine, Herbert; Reynolds, William (May 1991). "Streaming instability of aggregating slime mold amoebae".Physical Review Letters.66 (18):2400–2403.Bibcode:1991PhRvL..66.2400L.doi:10.1103/PhysRevLett.66.2400.PMID 10043475.
  53. ^Tyson, John J.; Alexander, Kevin A.; Manoranjan, V. S.; Murray, J.D. (1989-01-01). "Spiral waves of cyclic amp in a model of slime mold aggregation".Physica D: Nonlinear Phenomena.34 (1):193–207.Bibcode:1989PhyD...34..193T.doi:10.1016/0167-2789(89)90234-0.ISSN 0167-2789.
  54. ^Roos, W.; Nanjundiah, V.; Malchow, D.; Gerisch, G. (May 1975). "Amplification of cyclic-AMP signals in aggregating cells of Dictyostelium discoideum".FEBS Letters.53 (2):139–142.doi:10.1016/0014-5793(75)80005-6.PMID 166875.S2CID 29448450.
  55. ^Fujimori, Taihei; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi (March 2019)."Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis".Proceedings of the National Academy of Sciences of the United States of America.116 (10):4291–4296.Bibcode:2019PNAS..116.4291F.doi:10.1073/pnas.1815063116.PMC 6410881.PMID 30782791.
  56. ^Bonner, John Tyler (1983)."Chemical Signals of Social Amoebae".Scientific American.248 (4):114–121.Bibcode:1983SciAm.248d.114B.doi:10.1038/scientificamerican0483-114.ISSN 0036-8733.JSTOR 24968880.
  57. ^Sheikh, Sanea; Fu, Chengjie; Brown, Matthew; Baldauf, Sandra (1 March 2023),Deep origins of eukaryotic multicellularity revealed by the Acrasis kona genome and developmental transcriptomes,doi:10.21203/rs.3.rs-2587723/v1
  58. ^Gilbert, H. C.;Martin, G. W. (1933). "Myxomycetes found on the bark of living trees".University of Iowa Studies in Natural History.15:3–8.
  59. ^abcdKeller, Harold W.; Everhart, Sydney (2010). "Importance of Myxomycetes in Biological Research and Teaching".Fungi.3 (1 (Winter 2010)).
  60. ^Steglich, W. (1 January 1989)."Slime moulds (Myxomycetes) as a source of new biologically active metabolites".Pure and Applied Chemistry.61 (3). Walter de Gruyter GmbH:281–288.doi:10.1351/pac198961030281.ISSN 1365-3075.S2CID 53663356.
  61. ^Dembitsky, Valery M.; Řezanka, Tomáš; Spížek, Jaroslav; Hanuš, Lumír O. (2005). "Secondary metabolites of slime molds (myxomycetes)".Phytochemistry.66 (7). Elsevier BV:747–769.Bibcode:2005PChem..66..747D.doi:10.1016/j.phytochem.2005.02.017.ISSN 0031-9422.PMID 15797602.
  62. ^Lierl, Michelle B. (2013). "Myxomycete (slime mold) spores: unrecognized aeroallergens?".Annals of Allergy, Asthma & Immunology.111 (6). Elsevier BV: 537–541.e2.doi:10.1016/j.anai.2013.08.007.ISSN 1081-1206.PMID 24267365.
  63. ^Carr, William E. S. (1989). "Chemical Signaling Systems in Lower Organisms: A Prelude to the Evolution of Chemical Communication in the Nervous System". In Anderson, Peter A.V. (ed.).Evolution of the First Nervous Systems. Boston, MA: Springer. pp. 81–94.doi:10.1007/978-1-4899-0921-3_6.ISBN 978-1-4899-0921-3.
  64. ^Carr, William E. S.; Gleeson, Richard A.; Trapido-Rosenthal, Henry G. (June 1990). "The role of perireceptor events in chemosensory processes".Trends in Neurosciences.13 (6):212–215.doi:10.1016/0166-2236(90)90162-4.PMID 1694326.S2CID 46452914.
  65. ^Lindsey, J.; Lasker, R. (1974)."Chemical Signals in the Sea: Marine Allelochemics and Evolution".Fishery Bulletin.72 (1):1–11.
  66. ^Lenhoff, H M; Heagy, W (April 1977). "Aquatic invertebrates: model systems for study of receptor activation and evolution of receptor proteins".Annual Review of Pharmacology and Toxicology.17 (1):243–258.doi:10.1146/annurev.pa.17.040177.001331.PMID 17353.
  67. ^Janssens, P.M.; Van Haastert, P.J. (December 1987)."Molecular basis of transmembrane signal transduction inDictyostelium discoideum".Microbiological Reviews.51 (4):396–418.doi:10.1128/mr.51.4.396-418.1987.PMC 373123.PMID 2893972.
  68. ^Saigusa, Tetsu; Tero, Atsushi; Nakagaki, Toshiyuki; Kuramoto, Yoshiki (January 2008). "Amoebae anticipate periodic events".Physical Review Letters.100 (1): 018101.Bibcode:2008PhRvL.100a8101S.doi:10.1103/PhysRevLett.100.018101.hdl:2115/33004.PMID 18232821.S2CID 14710241.
  69. ^MacPherson, Kitta (January 21, 2010)."The 'sultan of slime': Biologist continues to be fascinated by organisms after nearly 70 years of study". Princeton University.
  70. ^Zheng, Rong; Jia, Heming; Aualigah, Laith; Liu, Qingxin; Wang, Shuang (2021)."Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization".Processes.9 (10): 1774.doi:10.3390/pr9101774.
  71. ^Nakagaki, Toshiyuki; Yamada, Hiroyasu; Toth, Agotha (September 28, 2000)."Maze-solving by an amoeboid organism".Nature.407 (6803): 470.doi:10.1038/35035159.PMID 11028990.
  72. ^abTero, A.; Takagi, S.; Saigusa, T.; et al. (January 2010)."Rules for biologically inspired adaptive network design"(PDF).Science.327 (5964):439–442.Bibcode:2010Sci...327..439T.doi:10.1126/science.1177894.PMID 20093467.S2CID 5001773. Archived fromthe original(PDF) on 2013-04-21.
  73. ^Christiansen B (25 January 2010)."Slime Mold Network Engineering".Technovelgy.
  74. ^Marks, P. (6 January 2010)."Designing highways the slime mould way".New Scientist.
  75. ^Adamatzky, Andrew; Akl, S.; Alonso-Sanz, R.; et al. (2013). "Are motorways rational from slime mould's point of view?".International Journal of Parallel, Emergent and Distributed Systems.28 (3):230–248.arXiv:1203.2851.doi:10.1080/17445760.2012.685884.S2CID 15534238.
  76. ^Parr, D. (18 February 2014)."Cities in motion: how slime mould can redraw our rail and road maps".The Guardian.
  77. ^"Slime Mold Simulations Used to Map Dark Matter".NASA. 10 March 2020.
  78. ^Wenz, J. (12 March 2020)."Slime mold helps astronomers map dark matter".Astronomy magazine.
  79. ^abRequejo, Oscar; Andres-Rodriguez, N. Floro (2019)."Consideraciones Etnobiologicas sobre los Mixomicetos" [Ethnobiological Considerations on Myxomycetes].Bol. Soc. Micol. Madrid (in Spanish).43:25–37.

External links

edit

[8]ページ先頭

©2009-2025 Movatter.jp