Earthquake engineering is aninterdisciplinary branch of engineering that designs and analyzesstructures, such asbuildings andbridges, withearthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake (or seismic) engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage orcollapse in a major earthquake. Aproperly engineered structure does not necessarily have to be extremely strong or expensive. It has to be properly designed to withstand the seismic effects while sustaining an acceptable level of damage.
Definition
editEarthquake engineering is a scientific field concerned with protecting society, the natural environment, and the man-made environment from earthquakes by limiting theseismic risk tosocio-economically acceptable levels.[1] Traditionally, it has been narrowly defined as the study of the behavior of structures and geo-structures subject toseismic loading; it is considered as a subset ofstructural engineering,geotechnical engineering,mechanical engineering,chemical engineering,applied physics, etc. However, the tremendous costs experienced in recent earthquakes have led to an expansion of its scope to encompass disciplines from the wider field ofcivil engineering,mechanical engineering,nuclear engineering, and from thesocial sciences, especiallysociology,political science,economics, andfinance.[2][3]
The main objectives of earthquake engineering are:
- Foresee the potential consequences of strongearthquakes onurban areas and civil infrastructure.
- Design, construct and maintain structures toperform at earthquake exposure up to the expectations and in compliance withbuilding codes.[4]
Seismic loading
editSeismic loading means application of an earthquake-generated excitation on a structure (or geo-structure). It happens at contact surfaces of a structure either with the ground,[6] with adjacent structures,[7] or withgravity waves fromtsunami. The loading that is expected at a given location on the Earth's surface is estimated by engineeringseismology. It is related to theseismic hazard of the location.
Seismic performance
editEarthquake orseismic performance defines a structure's ability to sustain its main functions, such as itssafety andserviceability,at andafter a particular earthquake exposure. A structure is normally consideredsafe if it does not endanger the lives andwell-being of those in or around it by partially or completely collapsing. A structure may be consideredserviceable if it is able to fulfill its operational functions for which it was designed.
Basic concepts of the earthquake engineering, implemented in the major building codes, assume that a building should survive a rare, very severe earthquake by sustaining significant damage but without globally collapsing.[8] On the other hand, it should remain operational for more frequent, but less severe seismic events.
Seismic performance assessment
editEngineers need to know the quantified level of the actual or anticipated seismic performance associated with the direct damage to an individual building subject to a specified ground shaking. Such an assessment may be performed either experimentally or analytically.[citation needed]
Experimental assessment
editExperimental evaluations are expensive tests that are typically done by placing a (scaled) model of the structure on ashake-table that simulates the earth shaking and observing its behavior.[9] Such kinds of experiments were first performed more than a century ago.[10] Only recently has it become possible to perform 1:1 scale testing on full structures.
Due to the costly nature of such tests, they tend to be used mainly for understanding the seismic behavior of structures, validating models and verifying analysis methods. Thus, once properly validated, computational models and numerical procedures tend to carry the major burden for the seismic performance assessment of structures.
Analytical/Numerical assessment
editSeismic performance assessment orseismic structural analysis is a powerful tool of earthquake engineering which utilizes detailed modelling of the structure together with methods of structural analysis to gain a better understanding of seismic performance of building andnon-building structures. The technique as a formal concept is a relatively recent development.
In general, seismic structural analysis is based on the methods ofstructural dynamics.[11] For decades, the most prominent instrument of seismic analysis has been the earthquakeresponse spectrum method which also contributed to the proposed building code's concept of today.[12]
However, such methods are good only for linear elastic systems, being largely unable to model the structural behavior when damage (i.e.,non-linearity) appears. Numericalstep-by-step integration proved to be a more effective method of analysis for multi-degree-of-freedomstructural systems with significantnon-linearity under atransient process ofground motion excitation.[13] Use of thefinite element method is one of the most common approaches for analyzing non-linearsoil structure interaction computer models.
Basically, numerical analysis is conducted in order to evaluate the seismic performance of buildings. Performance evaluations are generally carried out by using nonlinear static pushover analysis or nonlinear time-history analysis. In such analyses, it is essential to achieve accurate non-linear modeling of structural components such as beams, columns, beam-column joints, shear walls etc. Thus, experimental results play an important role in determining the modeling parameters of individual components, especially those that are subject to significant non-linear deformations. The individual components are then assembled to create a full non-linear model of the structure. Thus created models are analyzed to evaluate the performance of buildings.[citation needed]
The capabilities of the structural analysis software are a major consideration in the above process as they restrict the possible component models, the analysis methods available and, most importantly, the numerical robustness. The latter becomes a major consideration for structures that venture into the non-linear range and approach global or local collapse as the numerical solution becomes increasingly unstable and thus difficult to reach. There are several commercially available Finite Element Analysis software's such as CSI-SAP2000 and CSI-PERFORM-3D, MTR/SASSI, Scia Engineer-ECtools,ABAQUS, andAnsys, all of which can be used for the seismic performance evaluation of buildings. Moreover, there is research-based finite element analysis platforms such asOpenSees, MASTODON, which is based on theMOOSE Framework, RUAUMOKO and the older DRAIN-2D/3D, several of which are now open source.[citation needed]
Research for earthquake engineering
editResearch for earthquake engineering means both field and analytical investigation or experimentation intended for discovery and scientific explanation of earthquake engineering related facts, revision of conventional concepts in the light of new findings, and practical application of the developed theories.
TheNational Science Foundation (NSF) is the main United States government agency that supports fundamental research and education in all fields of earthquake engineering. In particular, it focuses on experimental, analytical and computational research on design and performance enhancement of structural systems.
TheEarthquake Engineering Research Institute (EERI) is a leader in dissemination ofearthquake engineering research related information both in the U.S. and globally.
A definitive list of earthquake engineering research relatedshaking tables around the world may be found in Experimental Facilities for Earthquake Engineering Simulation Worldwide.[14] The most prominent of them is nowE-Defense Shake Table inJapan.[15]
Major U.S. research programs
editNSF also supports the George E. Brown Jr.Network for Earthquake Engineering Simulation
The NSF Hazard Mitigation and Structural Engineering program (HMSE) supports research on new technologies for improving the behaviour and response of structural systems subject to earthquake hazards; fundamental research on safety and reliability of constructed systems; innovative developments inanalysis and model based simulation of structural behaviour and response including soil-structure interaction; design concepts that improvestructure performance and flexibility; and application of new control techniques for structural systems.[16]
(NEES) that advances knowledge discovery and innovation forearthquakes andtsunami loss reduction of the nation's civil infrastructure and new experimental simulation techniques and instrumentation.[17]
The NEES network features 14 geographically distributed, shared-use laboratories that support several types of experimental work:[17] geotechnical centrifuge research,shake-table tests, large-scale structural testing, tsunami wave basin experiments, and field site research.[18] Participating universities include:Cornell University;Lehigh University;Oregon State University;Rensselaer Polytechnic Institute;University at Buffalo,State University of New York;University of California, Berkeley;University of California, Davis;University of California, Los Angeles;University of California, San Diego;University of California, Santa Barbara;University of Illinois, Urbana-Champaign;University of Minnesota;University of Nevada, Reno; and theUniversity of Texas, Austin.[17]
The equipment sites (labs) and a central data repository are connected to the global earthquake engineering community via the NEEShub website. The NEES website is powered by HUBzero software developed atPurdue University fornanoHUB specifically to help the scientific community share resources and collaborate. The cyberinfrastructure, connected viaInternet2, provides interactive simulation tools, a simulation tool development area, a curated central data repository, animated presentations, user support, telepresence, mechanism for uploading and sharing resources, and statistics about users and usage patterns.
This cyberinfrastructure allows researchers to: securely store, organize and share data within a standardized framework in a central location; remotely observe and participate in experiments through the use of synchronized real-time data and video; collaborate with colleagues to facilitate the planning, performance, analysis, and publication of research experiments; and conduct computational and hybrid simulations that may combine the results of multiple distributed experiments and link physical experiments with computer simulations to enable the investigation of overall system performance.
These resources jointly provide the means for collaboration and discovery to improve the seismic design and performance of civil and mechanical infrastructure systems.
Earthquake simulation
editThe very firstearthquake simulations were performed by statically applying somehorizontal inertia forces based onscaledpeak ground accelerations to a mathematical model of a building.[19] With the further development of computational technologies,static approaches began to give way todynamic ones.
Dynamic experiments on building and non-building structures may be physical, likeshake-table testing, or virtual ones. In both cases, to verify a structure's expected seismic performance, some researchers prefer to deal with so called "real time-histories" though the last cannot be "real" for a hypothetical earthquake specified by either a building code or by some particular research requirements. Therefore, there is a strong incentive to engage an earthquake simulation which is the seismic input that possesses only essential features of a real event.
Sometimes earthquake simulation is understood as a re-creation of local effects of a strong earth shaking.
Structure simulation
editTheoretical or experimental evaluation of anticipated seismic performance mostly requires astructure simulation which is based on the concept of structural likeness or similarity.Similarity is some degree ofanalogy orresemblance between two or more objects. The notion of similarity rests either on exact or approximate repetitions ofpatterns in the compared items.
In general, a building model is said to have similarity with the real object if the two sharegeometric similarity,kinematic similarity anddynamic similarity. The most vivid and effective type of similarity is thekinematic one.Kinematic similarity exists when the paths and velocities of moving particles of a model and its prototype are similar.
The ultimate level ofkinematic similarity iskinematic equivalence when, in the case of earthquake engineering, time-histories of each story lateral displacements of the model and its prototype would be the same.
Seismic vibration control
editSeismic vibration control is a set of technical means aimed to mitigate seismic impacts in building andnon-building structures. All seismic vibration control devices may be classified aspassive,active orhybrid[21] where:
- passive control devices have nofeedback capability between them, structural elements and the ground;
- active control devices incorporate real-time recording instrumentation on the ground integrated with earthquake input processing equipment andactuators within the structure;
- hybrid control devices have combined features of active and passive control systems.[22]
When groundseismic waves reach up and start to penetrate a base of a building, their energy flow density, due to reflections, reduces dramatically: usually, up to 90%. However, the remaining portions of the incident waves during a major earthquake still bear a huge devastating potential.
After the seismic waves enter asuperstructure, there are a number of ways to control them in order to soothe their damaging effect and improve the building's seismic performance, for instance:
- todissipate the wave energy inside asuperstructure with properly engineereddampers;
- to disperse the wave energy between a wider range of frequencies;
- toabsorb theresonant portions of the whole wave frequencies band with the help of so-calledmass dampers.[23]
Devices of the last kind, abbreviated correspondingly as TMD for the tuned (passive), as AMD for theactive, and as HMD for thehybrid mass dampers, have been studied and installed inhigh-rise buildings, predominantly in Japan, for a quarter of a century.[24]
However, there is quite another approach: partial suppression of the seismic energy flow into thesuperstructure known as seismic orbase isolation.
For this, some pads are inserted into or under all major load-carrying elements in the base of the building which should substantially decouple asuperstructure from itssubstructure resting on a shaking ground.
The first evidence of earthquake protection by using the principle of base isolation was discovered inPasargadae, a city in ancient Persia, now Iran, and dates back to the 6th century BCE. Below, there are some samples of seismic vibration control technologies of today.
Dry-stone walls in Peru
editPeru is a highlyseismic land; for centuries the dry-stoneconstruction proved to be more earthquake-resistant than using mortar. People ofInca civilization were masters of the polished 'dry-stone walls', calledashlar, where blocks of stone were cut to fit together tightly without anymortar. The Incas were among the best stonemasons the world has ever seen[25] and many junctions in their masonry were so perfect that even blades of grass could not fit between the stones.
The stones of the dry-stone walls built by the Incas could move slightly and resettle without the walls collapsing, a passivestructural control technique employing both the principle of energy dissipation (coulomb damping) and that of suppressingresonant amplifications.[26]
Tuned mass damper
editTypically thetuned mass dampers are huge concrete blocks mounted inskyscrapers or other structures and move in opposition to theresonance frequency oscillations of the structures by means of some sort of spring mechanism.
TheTaipei 101 skyscraper needs to withstandtyphoon winds and earthquaketremors common in this area of Asia/Pacific. For this purpose, a steelpendulum weighing 660 metric tonnes that serves as a tuned mass damper was designed and installed atop the structure. Suspended from the 92nd to the 88th floor, the pendulum sways to decrease resonant amplifications of lateral displacements in the building caused by earthquakes and stronggusts.
Hysteretic dampers
editAhysteretic damper is intended to provide better and more reliable seismic performance than that of a conventional structure by increasing the dissipation ofseismic input energy.[27] There are five major groups of hysteretic dampers used for the purpose, namely:
- Fluid viscous dampers (FVDs)
Viscous Dampers have the benefit of being a supplemental damping system. They have an oval hysteretic loop and the damping is velocity dependent. While some minor maintenance is potentially required, viscous dampers generally do not need to be replaced after an earthquake. While more expensive than other damping technologies they can be used for both seismic and wind loads and are the most commonly used hysteretic damper.[28]
- Friction dampers (FDs)
Friction dampers tend to be available in two major types, linear and rotational and dissipate energy by heat. The damper operates on the principle of acoulomb damper. Depending on the design, friction dampers can experiencestick-slip phenomenon andCold welding. The main disadvantage being that friction surfaces can wear over time and for this reason they are not recommended for dissipating wind loads. When used in seismic applications wear is not a problem and there is no required maintenance. They have a rectangular hysteretic loop and as long as the building is sufficiently elastic they tend to settle back to their original positions after an earthquake.
- Metallic yielding dampers (MYDs)
Metallic yielding dampers, as the name implies, yield in order to absorb the earthquake's energy. This type of damper absorbs a large amount of energy however they must be replaced after an earthquake and may prevent the building from settling back to its original position.
- Viscoelastic dampers (VEDs)
Viscoelastic dampers are useful in that they can be used for both wind and seismic applications, they are usually limited to small displacements. There is some concern as to the reliability of the technology as some brands have been banned from use in buildings in the United States.
- Straddling pendulum dampers (swing)
Base isolation
editBase isolation seeks to prevent the kinetic energy of the earthquake from being transferred into elastic energy in the building. These technologies do so by isolating the structure from the ground, thus enabling them to move somewhat independently. The degree to which the energy is transferred into the structure and how the energy is dissipated will vary depending on the technology used.
- Lead rubber bearing
Lead rubber bearing or LRB is a type ofbase isolation employing a heavydamping. It was invented byBill Robinson, a New Zealander.[29]
Heavy damping mechanism incorporated invibration control technologies and, particularly, in base isolation devices, is often considered a valuable source of suppressing vibrations thus enhancing a building's seismic performance. However, for the rather pliant systems such as base isolated structures, with a relatively low bearing stiffness but with a high damping, the so-called "damping force" may turn out the main pushing force at a strong earthquake. The video[30] shows a Lead Rubber Bearing being tested at theUCSD Caltrans-SRMD facility. The bearing is made of rubber with a lead core. It was a uniaxial test in which the bearing was also under a full structure load. Many buildings and bridges, both in New Zealand and elsewhere, are protected with lead dampers and lead and rubber bearings.Te Papa Tongarewa, the national museum of New Zealand, and the New ZealandParliament Buildings have been fitted with the bearings. Both are inWellington which sits on anactive fault.[29]
- Springs-with-damper base isolator
Springs-with-damper base isolator installed under a three-story town-house,Santa Monica, California is shown on the photo taken prior to the 1994Northridge earthquake exposure. It is abase isolation device conceptually similar toLead Rubber Bearing.
One of two three-story town-houses like this, which was well instrumented for recording of both vertical and horizontalaccelerations on its floors and the ground, has survived a severe shaking during theNorthridge earthquake and left valuable recorded information for further study.
- Simple roller bearing
Simple roller bearing is abase isolation device which is intended for protection of various building and non-building structures against potentially damaginglateral impacts of strong earthquakes.
This metallic bearing support may be adapted, with certain precautions, as a seismic isolator to skyscrapers and buildings on soft ground. Recently, it has been employed under the name ofmetallic roller bearing for a housing complex (17 stories) inTokyo, Japan.[31]
- Friction pendulum bearing
Friction pendulum bearing (FPB) is another name offriction pendulum system (FPS). It is based on three pillars:[32]
- articulated friction slider;
- spherical concave sliding surface;
- enclosing cylinder for lateral displacement restraint.
Snapshot with the link to video clip of ashake-table testing of FPB system supporting a rigid building model is presented at the right.
Seismic design
editSeismic design is based on authorized engineering procedures, principles and criteria meant todesign orretrofit structures subject to earthquake exposure.[19] Those criteria are only consistent with the contemporary state of the knowledge aboutearthquake engineering structures.[33] Therefore, a building design which exactly follows seismic code regulations does not guarantee safety against collapse or serious damage.[34]
The price of poor seismic design may be enormous. Nevertheless, seismic design has always been atrial and error process whether it was based on physical laws or on empirical knowledge of thestructural performance of different shapes and materials.
To practiceseismic design, seismic analysis or seismic evaluation of new and existing civil engineering projects, anengineer should, normally, pass examination onSeismic Principles[35] which, in the State of California, include:
- Seismic Data and Seismic Design Criteria
- Seismic Characteristics of Engineered Systems
- Seismic Forces
- Seismic Analysis Procedures
- Seismic Detailing and Construction Quality Control
To build up complex structural systems,[36] seismic design largely uses the same relatively small number of basic structural elements (to say nothing of vibration control devices) as any non-seismic design project.
Normally, according to building codes, structures are designed to "withstand" the largest earthquake of a certain probability that is likely to occur at their location. This means the loss of life should be minimized by preventing collapse of the buildings.
Seismic design is carried out by understanding the possiblefailure modes of a structure and providing the structure with appropriatestrength,stiffness,ductility, andconfiguration[37] to ensure those modes cannot occur.
Seismic design requirements
editSeismic design requirements depend on the type of the structure, locality of the project and its authorities which stipulate applicable seismic design codes and criteria.[8] For instance,California Department of Transportation's requirements calledThe Seismic Design Criteria (SDC) and aimed at the design of new bridges in California[38] incorporate an innovative seismic performance-based approach.
The most significant feature in the SDC design philosophy is a shift from aforce-based assessment of seismic demand to adisplacement-based assessment of demand and capacity. Thus, the newly adopted displacement approach is based on comparing theelastic displacement demand to theinelastic displacement capacity of the primary structural components while ensuring a minimum level of inelastic capacity at all potential plastic hinge locations.
In addition to the designed structure itself, seismic design requirements may include aground stabilization underneath the structure: sometimes, heavily shaken ground breaks up which leads to collapse of the structure sitting upon it.[40]The following topics should be of primary concerns: liquefaction; dynamic lateral earth pressures on retaining walls; seismic slope stability; earthquake-induced settlement.[41]
Nuclear facilities should not jeopardise their safety in case of earthquakes or other hostile external events. Therefore, their seismic design is based on criteria far more stringent than those applying to non-nuclear facilities.[42] TheFukushima I nuclear accidents anddamage to other nuclear facilities that followed the2011 Tōhoku earthquake and tsunami have, however, drawn attention to ongoing concerns overJapanese nuclear seismic design standards and caused many other governments tore-evaluate their nuclear programs. Doubt has also been expressed over the seismic evaluation and design of certain other plants, including theFessenheim Nuclear Power Plant in France.
Failure modes
editFailure mode is the manner by which an earthquake induced failure is observed. It, generally, describes the way the failure occurs. Though costly and time-consuming, learning from each real earthquake failure remains a routine recipe for advancement inseismic design methods. Below, some typical modes of earthquake-generated failures are presented.
The lack ofreinforcement coupled with poormortar and inadequate roof-to-wall ties can result in substantial damage to anunreinforced masonry building. Severely cracked or leaning walls are some of the most common earthquake damage. Also hazardous is the damage that may occur between the walls and roof or floor diaphragms. Separation between the framing and the walls can jeopardize the vertical support of roof and floor systems.
Soft story effect. Absence of adequate stiffness on the ground level caused damage to this structure. A close examination of the image reveals that the rough board siding, once covered by abrick veneer, has been completely dismantled from the studwall. Only therigidity of the floor above combined with the support on the two hidden sides by continuous walls, not penetrated with large doors as on the street sides, is preventing full collapse of the structure.
Soil liquefaction. In the cases where the soil consists of loose granular deposited materials with the tendency to develop excessive hydrostatic pore water pressure of sufficient magnitude and compact,liquefaction of those loose saturated deposits may result in non-uniformsettlements and tilting of structures. This caused major damage to thousands of buildings in Niigata, Japan during the1964 earthquake.[43]
Landslide rock fall. Alandslide is a geological phenomenon which includes a wide range of ground movement, includingrock falls. Typically, the action ofgravity is the primary driving force for a landslide to occur though in this case there was another contributing factor which affected the originalslope stability: the landslide required anearthquake trigger before being released.
Pounding against adjacent building. This is a photograph of the collapsed five-story tower, St. Joseph's Seminary,Los Altos, California which resulted in one fatality. DuringLoma Prieta earthquake, the tower pounded against the independently vibrating adjacent building behind. A possibility of pounding depends on both buildings' lateral displacements which should be accurately estimated and accounted for.
AtNorthridge earthquake, the Kaiser Permanente concrete frame office building had joints completely shattered, revealinginadequate confinement steel, which resulted in the second story collapse. In the transverse direction, composite endshear walls, consisting of twowythes of brick and a layer ofshotcrete that carried the lateral load, peeled apart because ofinadequate through-ties and failed.
- Improperconstruction site on afoothill.
- Poor detailing of thereinforcement (lack of concrete confinement in the columns and at the beam-column joints, inadequate splice length).
- Seismically weaksoft story at the first floor.
- Longcantilevers with heavydead load.
Sliding off foundations effect of a relatively rigid residential building structure during1987 Whittier Narrows earthquake. The magnitude 5.9 earthquake pounded the Garvey West Apartment building in Monterey Park, California and shifted itssuperstructure about 10 inches to the east on its foundation.
If a superstructure is not mounted on abase isolation system, its shifting on the basement should be prevented.
Reinforced concrete column burst atNorthridge earthquake due toinsufficient shear reinforcement mode which allows main reinforcement tobuckle outwards. The deck unseated at thehinge and failed in shear. As a result, the La Cienega-Veniceunderpass section of the 10 Freeway collapsed.
Loma Prieta earthquake: side view of reinforced concretesupport-columns failure which triggeredthe upper deck collapse onto the lower deck of the two-level Cypress viaduct of Interstate Highway 880, Oakland, CA.
Retaining wall failure atLoma Prieta earthquake in Santa Cruz Mountains area: prominent northwest-trending extensional cracks up to 12 cm (4.7 in) wide in the concretespillway to Austrian Dam, the northabutment.
Ground shaking triggeredsoil liquefaction in a subsurface layer ofsand, producing differential lateral and vertical movement in an overlyingcarapace of unliquefied sand andsilt. Thismode of ground failure, termedlateral spreading, is a principal cause of liquefaction-related earthquake damage.[44]
Severely damaged building of Agriculture Development Bank of China after2008 Sichuan earthquake: most of thebeams and pier columns are sheared. Large diagonal cracks in masonry and veneer are due to in-plane loads while abruptsettlement of the right end of the building should be attributed to alandfill which may be hazardous even without any earthquake.[45]
Twofold tsunami impact:sea waves hydraulicpressure andinundation. Thus,the Indian Ocean earthquake of December 26, 2004, with theepicenter off the west coast ofSumatra, Indonesia, triggered a series of devastating tsunamis, killing more than 230,000 people in eleven countries byinundating surrounding coastal communities with huge waves up to 30 meters (100 feet) high.[47]
Earthquake-resistant construction
editEarthquake construction means implementation ofseismic design to enable building and non-building structures to live through the anticipated earthquake exposure up to the expectations and in compliance with the applicablebuilding codes.
Design and construction are intimately related. To achieve a good workmanship, detailing of the members and their connections should be as simple as possible. As any construction in general, earthquake construction is a process that consists of the building, retrofitting or assembling of infrastructure given the construction materials available.[48]
The destabilizing action of an earthquake on constructions may bedirect (seismic motion of the ground) orindirect (earthquake-induced landslides,soil liquefaction and waves of tsunami).
A structure might have all the appearances of stability, yet offer nothing but danger when an earthquake occurs.[49] The crucial fact is that, for safety, earthquake-resistant construction techniques are as important asquality control and using correct materials.Earthquake contractor should beregistered in the state/province/country of the project location (depending on local regulations),bonded andinsured[citation needed].
To minimize possiblelosses, construction process should be organized with keeping in mind that earthquake may strike any time prior to the end of construction.
Eachconstruction project requires a qualified team of professionals who understand the basic features of seismic performance of different structures as well asconstruction management.
Adobe structures
editAround thirty percent of the world's population lives or works in earth-made construction.[50]Adobe type ofmud bricks is one of the oldest and most widely used building materials. The use ofadobe is very common in some of the world's most hazard-prone regions, traditionally across Latin America, Africa, Indian subcontinent and other parts of Asia, Middle East and Southern Europe.
Adobe buildings are considered very vulnerable at strong quakes.[51] However, multiple ways of seismic strengthening of new and existing adobe buildings are available.[52]
Key factors for the improved seismic performance ofadobe construction are:
- Quality of construction.
- Compact, box-type layout.
- Seismic reinforcement.[53]
Limestone and sandstone structures
editLimestone is very common in architecture, especially in North America and Europe. Many landmarks across the world are made of limestone. Many medieval churches and castles in Europe are made oflimestone andsandstone masonry. They are the long-lasting materials but their rather heavy weight is not beneficial for adequate seismic performance.
Application of modern technology to seismic retrofitting can enhance the survivability of unreinforced masonry structures. As an example, from 1973 to 1989, theSalt Lake City and County Building inUtah was exhaustively renovated and repaired with an emphasis on preserving historical accuracy in appearance. This was done in concert with a seismic upgrade that placed the weak sandstone structure on base isolation foundation to better protect it from earthquake damage.
Timber frame structures
editTimber framing dates back thousands of years, and has been used in many parts of the world during various periods such as ancient Japan, Europe and medieval England in localities where timber was in good supply and building stone and the skills to work it were not.
The use oftimber framing in buildings provides their complete skeletal framing which offers some structural benefits as the timber frame, if properly engineered, lends itself to betterseismic survivability.[54]
Light-frame structures
editLight-frame structures usually gain seismic resistance from rigidplywood shear walls and wood structural paneldiaphragms.[55] Special provisions for seismic load-resisting systems for allengineered wood structures requires consideration of diaphragm ratios, horizontal and vertical diaphragm shears, andconnector/fastener values. In addition, collectors, or drag struts, to distribute shear along a diaphragm length are required.
Reinforced masonry structures
editA construction system wheresteel reinforcement is embedded in themortar joints ofmasonry or placed in holes and that are filled withconcrete orgrout is calledreinforced masonry.[56] There are various practices and techniques to reinforce masonry. The most common type is the reinforcedhollow unit masonry.
To achieve aductile behavior in masonry, it is necessary that theshear strength of the wall is greater than theflexural strength.[57] The effectiveness of both vertical and horizontal reinforcements depends on the type and quality of the masonry units andmortar.
The devastating1933 Long Beach earthquake revealed that masonry is prone to earthquake damage, which led to theCalifornia State Code making masonry reinforcement mandatory across California.
Reinforced concrete structures
editReinforced concrete is concrete in which steel reinforcement bars (rebars) orfibers have been incorporated to strengthen a material that would otherwise bebrittle. It can be used to producebeams,columns, floors or bridges.
Prestressed concrete is a kind ofreinforced concrete used for overcoming concrete's natural weakness in tension. It can be applied tobeams, floors or bridges with a longer span than is practical with ordinary reinforced concrete. Prestressingtendons (generally of high tensile steel cable or rods) are used to provide a clamping load which produces acompressive stress that offsets thetensile stress that the concretecompression member would, otherwise, experience due to a bending load.
To prevent catastrophic collapse in response earth shaking (in the interest of life safety), a traditional reinforced concrete frame should haveductile joints. Depending upon the methods used and the imposed seismic forces, such buildings may be immediately usable, require extensive repair, or may have to be demolished.
Prestressed structures
editPrestressed structure is the one whose overallintegrity,stability andsecurity depend, primarily, on aprestressing.Prestressing means the intentional creation of permanent stresses in a structure for the purpose of improving its performance under various service conditions.[58]
There are the following basic types of prestressing:
- Pre-compression (mostly, with the own weight of a structure)
- Pretensioning with high-strength embedded tendons
- Post-tensioning with high-strength bonded or unbonded tendons
Today, the concept ofprestressed structure is widely engaged in design ofbuildings, underground structures, TV towers, power stations, floating storage and offshore facilities,nuclear reactor vessels, and numerous kinds ofbridge systems.[59]
A beneficial idea ofprestressing was, apparently, familiar to the ancient Roman architects; look, e.g., at the tallattic wall ofColosseum working as a stabilizing device for the wallpiers beneath.
Steel structures
editSteel structures are considered mostly earthquake resistant but some failures have occurred. A great number of weldedsteel moment-resisting frame buildings, which looked earthquake-proof, surprisingly experienced brittle behavior and were hazardously damaged in the1994 Northridge earthquake.[60] After that, theFederal Emergency Management Agency (FEMA) initiated development of repair techniques and new design approaches to minimize damage to steel moment frame buildings in future earthquakes.[61]
Forstructural steel seismic design based onLoad and Resistance Factor Design (LRFD) approach, it is very important to assess ability of a structure to develop and maintain its bearing resistance in theinelastic range. A measure of this ability isductility, which may be observed in amaterial itself, in astructural element, or to awhole structure.
As a consequence ofNorthridge earthquake experience, the American Institute of Steel Construction has introduced AISC 358 "Pre-Qualified Connections for Special and intermediate Steel Moment Frames." The AISC Seismic Design Provisions require that allSteel Moment Resisting Frames employ either connections contained in AISC 358, or the use of connections that have been subjected to pre-qualifying cyclic testing.[62]
Prediction of earthquake losses
editEarthquake loss estimation is usually defined as aDamage Ratio (DR) which is a ratio of the earthquake damage repair cost to thetotal value of a building.[63]Probable Maximum Loss (PML) is a common term used for earthquake loss estimation, but it lacks a precise definition. In 1999, ASTM E2026 'Standard Guide for the Estimation of Building Damageability in Earthquakes' was produced in order to standardize the nomenclature for seismic loss estimation, as well as establish guidelines as to the review process and qualifications of the reviewer.[64]
Earthquake loss estimations are also referred to asSeismic Risk Assessments. The risk assessment process generally involves determining the probability of various ground motions coupled with the vulnerability or damage of the building under those ground motions. The results are defined as a percent of building replacement value.[65]
See also
edit- Anchor plate
- Earthquake Engineering Research Institute
- Earthquake resistant structures
- Emergency management
- Facade
- Geotechnical engineering
- International Institute of Earthquake Engineering and Seismology
- List of international earthquake acceleration coefficients
- National Center for Research on Earthquake Engineering
- Probabilistic risk assessment
- Seismic intensity scales
- Seismic magnitude scales
- Seismic response of landfill
- Seismic retrofit
- Seismic site response
- Soil structure interaction
- Spectral acceleration
References
edit- ^Bozorgnia, Yousef; Bertero, Vitelmo V. (2004).Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering.CRC Press.ISBN 978-0-8493-1439-1.
- ^Yang, T.Y. (2013). "Assessing seismic risks for new and existing buildings using performance-based earthquake engineering (PBEE) methodology".Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems. pp. 307–333.doi:10.1533/9780857098986.3.307.ISBN 978-0-85709-268-7.
Earthquake engineering has evolved from using a set of prescriptive provisions, indirectly aimed at providing life safety, to performance-based approaches with direct consideration of a range of performance objectives, such as minimizing the repair cost of the facility under a range of earthquake shaking intensities.
- ^Rajasekaran, S. (2009). "Earthquake and earthquake ground motion".Structural Dynamics of Earthquake Engineering. pp. 571–604.doi:10.1533/9781845695736.2.571.ISBN 978-1-84569-518-7.
- ^Berg, Glen V. (1983).Seismic Design Codes and Procedures. Earthquake Engineering Research Institute.ISBN 978-0-943198-25-5.[page needed]
- ^"Earthquake Protector: Shake Table Crash Testing". 27 June 2007.Archived from the original on 2021-12-21. Retrieved2012-07-31 – via YouTube.
- ^"Geotechnical Earthquake Engineering".earthquake.geoengineer.org.
- ^"Seismic Pounding between Adjacent Building Structures"(PDF). Archived fromthe original(PDF) on 2008-10-30. Retrieved2008-07-17.
- ^abCommittee, Structural Engineers Association of California Seismology (1999).Recommended Lateral Force Requirements and Commentary. Structural Engineers Association of California.OCLC 606489444.[page needed]
- ^neesit (2007-11-17)."Shaking Table Test on Conventional Wooden House (1)". Retrieved2012-07-31 – via YouTube.[dead YouTube link]
- ^Omori, F. (1900).Seismic Experiments on the Fracturing and Overturning of Columns. Publ. Earthquake Invest. Comm. In Foreign Languages, N.4, Tokyo.
- ^Chopra, Anil K. (1995).Dynamics of Structures. Prentice Hall.ISBN 0-13-855214-2.
- ^Newmark, Nathan Mortimore; Hall, William Joel (1987).Earthquake Spectra and Design. Earthquake Engineering Research Institute.ISBN 978-0-943198-22-4.[page needed]
- ^Clough, Ray W.; Penzien, Joseph (1993).Dynamics of Structures. McGraw-Hill.ISBN 978-0-07-011394-7.[page needed]
- ^"Experimental Facilities for Earthquake Engineering Simulation Worldwide: Are Large Testing Facilities for Nuclear Power Plants Design and Verification at Risk?". Nuclear Energy Agency. September 30, 2021. RetrievedDecember 15, 2022.
- ^"The NIED 'E-Defence' Laboratory in Miki City". Hyogo Earthquake Engineering Research Center. RetrievedMarch 3, 2008.
- ^"CMMI – Funding – Hazard Mitigation and Structural Engineering – US National Science Foundation (NSF)". nsf.gov. 19 October 2004. Retrieved2012-07-31.
- ^abc"Network for Earthquake Engineering Simulation".Official web site. Archived fromthe original on September 28, 2018. RetrievedSeptember 21, 2011.
- ^[1]Archived May 12, 2008, at theWayback Machine
- ^abLindeburg, Michael R.; Baradar, Majid (2001).Seismic Design of Building Structures: A Professional's Introduction to Earthquake Forces and Design Details. Professional Publications.ISBN 978-1-888577-52-5.[page needed]
- ^"Base isolation for earthquake engineering". 2007-06-27.Archived from the original on 2021-12-21. Retrieved2012-07-31 – via YouTube.
- ^"Passive and active vibration isolation systems – Theory". Physics-animations.com. Archived fromthe original on 2007-02-04. Retrieved2012-07-31.
- ^Chu, S.Y.; Soong, T.T.; Reinhorn, A.M. (2005).Active, Hybrid and Semi-Active Structural Control. John Wiley & Sons.ISBN 0-470-01352-4.
- ^"Slide 2". Ffden-2.phys.uaf.edu. Retrieved2012-07-31.
- ^"想いをかたちに 未来へつなぐ 竹中工務店".takenaka.co.jp.
- ^"Live Event Q&As". PBS. Retrieved2013-07-28.
- ^"Clark, Liesl; "First Inhabitants"; PBS online, Nova; updated Nov. 2000". PBS. Retrieved2013-07-28.
- ^[2]Archived May 14, 2014, at theWayback Machine
- ^Pollini, Nicolò; Lavan, Oren; Amir, Oded (December 2018)."Optimization-based minimum-cost seismic retrofitting of hysteretic frames with nonlinear fluid viscous dampers"(PDF).Earthquake Engineering & Structural Dynamics.47 (15):2985–3005.Bibcode:2018EESD...47.2985P.doi:10.1002/eqe.3118.
- ^ab"4. Building for earthquake resistance – Earthquakes – Te Ara Encyclopedia of New Zealand". Teara.govt.nz. 2009-03-02. Archived fromthe original on 2012-10-17. Retrieved2012-07-31.
- ^neesit (2007-07-10)."LBRtest".Archived from the original on 2021-12-21. Retrieved2012-07-31 – via YouTube.
- ^"Building Technology + Seismic Isolation System – Okumura Corporation" (in Japanese). Okumuragumi.co.jp. Archived fromthe original on 2012-08-25. Retrieved2012-07-31.
- ^Zayas, Victor A.; Low, Stanley S.; Mahin, Stephen A. (May 1990). "A Simple Pendulum Technique for Achieving Seismic Isolation".Earthquake Spectra.6 (2):317–333.Bibcode:1990EarSp...6..317Z.doi:10.1193/1.1585573.
- ^Housner, George William; Jennings, Paul C. (1982).Earthquake Design Criteria. Earthquake Engineering Research Institute.ISBN 978-0-943198-23-1.[page needed]
- ^"Earthquake-Resistant Construction". Nisee.berkeley.edu. Archived fromthe original on 2012-09-15. Retrieved2012-07-31.
- ^"Archived copy"(PDF). Archived fromthe original(PDF) on 2008-10-26. Retrieved2008-06-19.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^Farzad Naeim, ed. (1989).Seismic Design Handbook. VNR.ISBN 0-442-26922-6.
- ^Arnold, Christopher; Reitherman, Robert (1982).Building Configuration & Seismic Design. A Wiley-Interscience Publication.ISBN 0-471-86138-3.
- ^"Template for External Caltrans Pages". Dot.ca.gov. Retrieved2012-07-31.
- ^"Strategy to Close Metsamor Plant Presented | Asbarez Armenian News". Asbarez.com. 1995-10-26. Archived fromthe original on 2009-06-10. Retrieved2012-07-31.
- ^neesit (27 April 2007)."Niigita Earthquake 1964 – YouTube". Retrieved2012-07-31 – via YouTube.
- ^Robert W. Day (2007).Geotechnical Earthquake Engineering Handbook. McGraw Hill.ISBN 978-0-07-137782-9.
- ^"Nuclear Power Plants and Earthquakes". World-nuclear.org. Archived fromthe original on 2009-07-22. Retrieved2013-07-28.
- ^neesit (27 April 2007)."Niigita Earthquake 1964". Retrieved2012-07-31 – via YouTube.
- ^Rathje, Ellen (18 May 2007)."Soil Liquefaction with Dr. Ellen Rathje".Archived from the original on 2021-12-21. Retrieved2013-07-28 – via YouTube.
- ^"Building Collapse". 3 March 2007.Archived from the original on 2021-12-21. Retrieved2013-07-28 – via YouTube.
- ^"Tsunami disaster (Sri Lanka Resort)". 7 March 2006.Archived from the original on 2021-12-21. Retrieved2013-07-28 – via YouTube.
- ^"YouTube". Retrieved2013-07-28 – via YouTube.[dead YouTube link]
- ^Robert Lark, ed. (2007).Bridge Design, Construction and Maintenance. Thomas Telford.ISBN 978-0-7277-3593-5.
- ^"Bad construction cited in quake zone – World news – Asia-Pacific – China earthquake". NBC News. 5 June 2008. Retrieved2013-07-28.
- ^"Earth Architecture – the Book, Synopsis". Retrieved21 January 2010.
- ^"simulacion terremoto peru-huaraz – casas de adobe – YouTube". Nz.youtube.com. 2006-06-24. Retrieved2013-07-28.[dead YouTube link]
- ^Blondet, Marcial; Villa Garcia M., Gladys; Brzev, Svetlana; Rubiños, Álvaro (April 2011)."Earthquake-Resistant Construction of Adobe Buildings: A Tutorial"(PDF).World Housing Encyclopedia.
- ^"Shake table testing of adobe house (4A-S7 East) – YouTube". Nz.youtube.com. 2007-01-12.Archived from the original on 2021-12-21. Retrieved2013-07-28.
- ^Götz, Karl-Heinz (1989).Timber Design and Construction Sourcebook: A Comprehensive Guide to Methods and Practice. McGraw-Hill.ISBN 978-0-07-023851-0.[page needed]
- ^"SEESL". Nees.buffalo.edu. Archived fromthe original on 2013-05-22. Retrieved2013-07-28.
- ^Rossen Rashkoff."Reinforced Brick Masonry". Staff.city.ac.uk. Archived fromthe original on 2013-08-19. Retrieved2013-07-28.
- ^Ekwueme, Chukwuma G.; Uzarski, Joe (2003).Seismic Design of Masonry Using the 1997 UBC. Concrete Masonry Association of California and Nevada.
- ^Nilson, Arthur H. (1987).Design of Prestressed Concrete. John Wiley & Sons.ISBN 0-471-83072-0.
- ^Nawy, Edward G. (1989).Prestressed Concrete. Prentice Hall.ISBN 0-13-698375-8.
- ^Reitherman, Robert (2012).Earthquakes and Engineers: An International History. Reston, VA: ASCE Press. pp. 394–395.ISBN 9780784410714. Archived fromthe original on 2012-07-26.
- ^"SAC Steel Project: Welcome". Sacsteel.org. Retrieved2013-07-28.
- ^Seismic Design Manual. Chicago: American Institute of Steel Construction. 2006. pp. 6.1–30.ISBN 1-56424-056-8.
- ^EERI Endowment Subcommittee (May 2000).Financial Management of Earthquake Risk. EERI Publication.ISBN 0-943198-21-6.
- ^Eugene Trahern (1999)."Loss Estimation". Archived fromthe original on 2009-04-10.
- ^Craig Taylor; Erik VanMarcke, eds. (2002).Acceptable Risk Processes: Lifeline and Natural Hazards. Reston, VA: ASCE, TCLEE.ISBN 9780784406236. Archived fromthe original on 2013-01-13.
External links
edit- Earthquake Engineering Research Institute
- Consortium of Universities for Research in Earthquake Engineering (CUREE)
- NHERI: A natural hazards engineering research infrastructure
- Earthquakes and Earthquake Engineering in The Library of Congress
- Infrastructure Risk Research Project at The University of British Columbia, Vancouver, CanadaArchived 2019-12-18 at theWayback Machine