Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quantum capacity

From Wikipedia, the free encyclopedia

Highest rate quantum information can be sent through a noisy quantum channel

In the theory ofquantum communication, thequantum capacity is the highest rate at whichquantum information can be communicated over many independent uses of a noisyquantum channel from a sender to a receiver. It is also equal to the highest rate at whichentanglement can be generated over the channel, and forward classical communication cannot improve it. The quantum capacity theorem is important for the theory ofquantum error correction, and more broadly for the theory ofquantum computation. The theorem giving a lower bound on the quantum capacity of any channel is colloquially known as the LSD theorem, after the authorsLloyd,[1]Shor,[2] and Devetak[3] who proved it with increasing standards of rigor.[4]

Hashing bound for Pauli channels

[edit]

The LSD theorem states that thecoherent information of aquantum channel is an achievable rate for reliable quantum communication. For aPauli channel, thecoherent information has a simple form[citation needed] and the proof that it is achievable is particularly simple as well. We[who?] prove the theorem for this special case by exploiting randomstabilizer codes and correcting only the likely errors that the channel produces.

Theorem (hashing bound). There exists a stabilizerquantum error-correcting code that achieves the hashing limitR=1H(p){\displaystyle R=1-H\left(\mathbf {p} \right)} for a Pauli channel of the following form:ρpIρ+pXXρX+pYYρY+pZZρZ,{\displaystyle \rho \mapsto p_{I}\rho +p_{X}X\rho X+p_{Y}Y\rho Y+p_{Z}Z\rho Z,}wherep=(pI,pX,pY,pZ){\displaystyle \mathbf {p} =\left(p_{I},p_{X},p_{Y},p_{Z}\right)} andH(p){\displaystyle H\left(\mathbf {p} \right)} is the entropy of this probability vector.

Proof. Consider correcting only the typical errors. That is, consider defining thetypical set of errors as follows:Tδpn{an:|1nlog2(Pr{Ean})H(p)|δ},{\displaystyle T_{\delta }^{\mathbf {p} ^{n}}\equiv \left\{a^{n}:\left\vert -{\frac {1}{n}}\log _{2}\left(\Pr \left\{E_{a^{n}}\right\}\right)-H\left(\mathbf {p} \right)\right\vert \leq \delta \right\},}wherean{\displaystyle a^{n}} is some sequence consisting of the letters{I,X,Y,Z}{\displaystyle \left\{I,X,Y,Z\right\}} andPr{Ean}{\displaystyle \Pr \left\{E_{a^{n}}\right\}} is the probability that an IID Pauli channel issues some tensor-product errorEanEa1Ean{\displaystyle E_{a^{n}}\equiv E_{a_{1}}\otimes \cdots \otimes E_{a_{n}}}. This typical set consists of the likely errors in the sense thatanTδpnPr{Ean}1ϵ,{\displaystyle \sum _{a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}}\Pr \left\{E_{a^{n}}\right\}\geq 1-\epsilon ,}for allϵ>0{\displaystyle \epsilon >0} and sufficiently largen{\displaystyle n}. The error-correctingconditions[5] for a stabilizer codeS{\displaystyle {\mathcal {S}}} in this case are that{Ean:anTδpn}{\displaystyle \{E_{a^{n}}:a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}\}} is a correctable set of errors if

EanEbnN(S)S,{\displaystyle E_{a^{n}}^{\dagger }E_{b^{n}}\notin N\left({\mathcal {S}}\right)\backslash {\mathcal {S}},}for all error pairsEan{\displaystyle E_{a^{n}}} andEbn{\displaystyle E_{b^{n}}} such thatan,bnTδpn{\displaystyle a^{n},b^{n}\in T_{\delta }^{\mathbf {p} ^{n}}} whereN(S){\displaystyle N({\mathcal {S}})} is thenormalizer ofS{\displaystyle {\mathcal {S}}}. Also, we consider the expectation of the error probability under a random choice of a stabilizer code.

Proceed as follows:ES{pe}=ES{anPr{Ean}I(Ean is uncorrectable under S)}ES{anTδpnPr{Ean}I(Ean is uncorrectable under S)}+ϵ=anTδpnPr{Ean}ES{I(Ean is uncorrectable under S)}+ϵ=anTδpnPr{Ean}PrS{Ean is uncorrectable under S}+ϵ.{\displaystyle {\begin{aligned}\mathbb {E} _{\mathcal {S}}\left\{p_{e}\right\}&=\mathbb {E} _{\mathcal {S}}\left\{\sum _{a^{n}}\Pr \left\{E_{a^{n}}\right\}{\mathcal {I}}\left(E_{a^{n}}{\text{ is uncorrectable under }}{\mathcal {S}}\right)\right\}\\&\leq \mathbb {E} _{\mathcal {S}}\left\{\sum _{a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}}\Pr \left\{E_{a^{n}}\right\}{\mathcal {I}}\left(E_{a^{n}}{\text{ is uncorrectable under }}{\mathcal {S}}\right)\right\}+\epsilon \\&=\sum _{a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}}\Pr \left\{E_{a^{n}}\right\}\mathbb {E} _{\mathcal {S}}\left\{{\mathcal {I}}\left(E_{a^{n}}{\text{ is uncorrectable under }}{\mathcal {S}}\right)\right\}+\epsilon \\&=\sum _{a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}}\Pr \left\{E_{a^{n}}\right\}\Pr _{\mathcal {S}}\left\{E_{a^{n}}{\text{ is uncorrectable under }}{\mathcal {S}}\right\}+\epsilon .\end{aligned}}}The first equality follows by definition—I{\displaystyle {\mathcal {I}}} is an indicator function equal to one ifEan{\displaystyle E_{a^{n}}} is uncorrectable underS{\displaystyle {\mathcal {S}}} and equal to zero otherwise. The first inequality follows, since we correct only the typical errors because the atypical error set has negligible probability mass. The second equality follows by exchanging the expectation and the sum. The third equality follows because the expectation of an indicator function is the probability that the event it selects occurs.


Continuing, we have:=anTδpnPr{Ean}PrS{Ebn:bnTδpn, bnan, EanEbnN(S)S}{\displaystyle =\sum _{a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}}\Pr \left\{E_{a^{n}}\right\}\Pr _{\mathcal {S}}\left\{\exists E_{b^{n}}:b^{n}\in T_{\delta }^{\mathbf {p} ^{n}},\ b^{n}\neq a^{n},\ E_{a^{n}}^{\dagger }E_{b^{n}}\in N\left({\mathcal {S}}\right)\backslash {\mathcal {S}}\right\}}

anTδAnPr{Ean}PrS{Ebn:bnTδpn, bnan, EanEbnN(S)}{\displaystyle \leq \sum _{a^{n}\in T_{\delta }^{A^{n}}}\Pr \left\{E_{a^{n}}\right\}\Pr _{\mathcal {S}}\left\{\exists E_{b^{n}}:b^{n}\in T_{\delta }^{\mathbf {p} ^{n}},\ b^{n}\neq a^{n},\ E_{a^{n}}^{\dagger }E_{b^{n}}\in N\left({\mathcal {S}}\right)\right\}}
=anTδpnPr{Ean}PrS{bnTδpn, bnanEanEbnN(S)}{\displaystyle =\sum _{a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}}\Pr \left\{E_{a^{n}}\right\}\Pr _{\mathcal {S}}\left\{\bigcup \limits _{b^{n}\in T_{\delta }^{\mathbf {p} ^{n}},\ b^{n}\neq a^{n}}E_{a^{n}}^{\dagger }E_{b^{n}}\in N\left({\mathcal {S}}\right)\right\}}
an,bnTδpn, bnanPr{Ean}PrS{EanEbnN(S)}{\displaystyle \leq \sum _{a^{n},b^{n}\in T_{\delta }^{\mathbf {p} ^{n}},\ b^{n}\neq a^{n}}\Pr \left\{E_{a^{n}}\right\}\Pr _{\mathcal {S}}\left\{E_{a^{n}}^{\dagger }E_{b^{n}}\in N\left({\mathcal {S}}\right)\right\}}
an,bnTδpn, bnanPr{Ean}2(nk){\displaystyle \leq \sum _{a^{n},b^{n}\in T_{\delta }^{\mathbf {p} ^{n}},\ b^{n}\neq a^{n}}\Pr \left\{E_{a^{n}}\right\}2^{-\left(n-k\right)}}
22n[H(p)+δ]2n[H(p)+δ]2(nk){\displaystyle \leq 2^{2n\left[H\left(\mathbf {p} \right)+\delta \right]}2^{-n\left[H\left(\mathbf {p} \right)+\delta \right]}2^{-\left(n-k\right)}}
=2n[1H(p)k/n3δ].{\displaystyle =2^{-n\left[1-H\left(\mathbf {p} \right)-k/n-3\delta \right]}.}

The first equality follows from the error-correcting conditions for a quantum stabilizer code, whereN(S){\displaystyle N\left({\mathcal {S}}\right)} is the normalizer ofS{\displaystyle {\mathcal {S}}}. The first inequality follows by ignoring any potential degeneracy in the code—we consider an error uncorrectable if it lies in the normalizerN(S){\displaystyle N\left({\mathcal {S}}\right)} and the probability can only be larger becauseN(S)SN(S){\displaystyle N\left({\mathcal {S}}\right)\backslash {\mathcal {S}}\in N\left({\mathcal {S}}\right)}. The second equality follows by realizing that the probabilities for the existence criterion and the union of events are equivalent. The second inequality follows by applying the union bound. The third inequality follows from the fact that the probability for a fixed operatorEanEbn{\displaystyle E_{a^{n}}^{\dagger }E_{b^{n}}} not equal to the identity commuting withthe stabilizer operators of a random stabilizer can be upper bounded as follows:PrS{EanEbnN(S)}=2n+k122n12(nk).{\displaystyle \Pr _{\mathcal {S}}\left\{E_{a^{n}}^{\dagger }E_{b^{n}}\in N\left({\mathcal {S}}\right)\right\}={\frac {2^{n+k}-1}{2^{2n}-1}}\leq 2^{-\left(n-k\right)}.}The reasoning here is that the random choice of a stabilizer code is equivalent tofixing operatorsZ1{\displaystyle Z_{1}}, ...,Znk{\displaystyle Z_{n-k}} and performing a uniformly randomClifford unitary. The probability that a fixed operator commutes withZ¯1{\displaystyle {\overline {Z}}_{1}}, ...,Z¯nk{\displaystyle {\overline {Z}}_{n-k}} is then just the number ofnon-identity operators in the normalizer (2n+k1{\displaystyle 2^{n+k}-1}) divided by the total number of non-identity operators (22n1{\displaystyle 2^{2n}-1}). After applying the above bound, we then exploit the following typicality bounds:anTδpn:Pr{Ean}2n[H(p)+δ],{\displaystyle \forall a^{n}\in T_{\delta }^{\mathbf {p} ^{n}}:\Pr \left\{E_{a^{n}}\right\}\leq 2^{-n\left[H\left(\mathbf {p} \right)+\delta \right]},}|Tδpn|2n[H(p)+δ].{\displaystyle \left\vert T_{\delta }^{\mathbf {p} ^{n}}\right\vert \leq 2^{n\left[H\left(\mathbf {p} \right)+\delta \right]}.}We conclude that as long as the ratek/n=1H(p)4δ{\displaystyle k/n=1-H\left(\mathbf {p} \right)-4\delta }, the expectation of the error probability becomes arbitrarily small, so that there exists at least one choice of a stabilizer code with the same bound on the error probability.

See also

[edit]

References

[edit]
  1. ^Seth Lloyd (1997). "Capacity of the noisy quantum channel".Physical Review A.55 (3):1613–1622.arXiv:quant-ph/9604015.Bibcode:1997PhRvA..55.1613L.doi:10.1103/PhysRevA.55.1613.S2CID 5555850.
  2. ^Peter Shor (2002)."The quantum channel capacity and coherent information"(PDF).Lecture Notes, MSRI Workshop on Quantum Computation.
  3. ^Igor Devetak (2005). "The private classical capacity and quantum capacity of a quantum channel".IEEE Transactions on Information Theory.51 (1):44–55.arXiv:quant-ph/0304127.Bibcode:2005ITIT...51...44D.doi:10.1109/TIT.2004.839515.S2CID 12246393.
  4. ^Wilde, Mark M. (2017).Quantum information theory (2nd ed.). Cambridge, UK.ISBN 978-1-316-80997-6.OCLC 972292559.{{cite book}}: CS1 maint: location missing publisher (link)
  5. ^Nielsen, Michael A.;Chuang, Isaac L. (2000),Quantum Computation and Quantum Information,Cambridge University Press,ISBN 978-0-521-63503-5.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantum_capacity&oldid=1310652067"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp