Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Positively separated sets

From Wikipedia, the free encyclopedia

Inmathematics, twonon-emptysubsetsA andB of a givenmetric space (Xd) are said to bepositively separated if theinfimum

infaA,bBd(a,b)>0.{\displaystyle \inf _{a\in A,b\in B}d(a,b)>0.}

(Some authors also specify thatA andB should bedisjoint sets; however, this adds nothing to the definition, since ifA andB have some common pointp, thend(pp) = 0, and so the infimum above is clearly 0 in that case.)

For example, on the real line with the usual distance, theopen intervals (0, 2) and (3, 4) are positively separated, while (3, 4) and (4, 5) are not. In two dimensions, the graph ofy = 1/x forx > 0 and thex-axis are not positively separated.

References

[edit]
  • Rogers, C. A. (1998).Hausdorff measures. Cambridge Mathematical Library (Third ed.). Cambridge: Cambridge University Press. pp. xxx+195.ISBN 0-521-62491-6.
Basic concepts
Main results
Maps
Types of
metric spaces
Sets
Examples
Manifolds
Functional analysis
andMeasure theory
General topology
Related
Generalizations
Stub icon

Thismetric geometry-related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Positively_separated_sets&oldid=1268237703"
Categories:
Hidden category:

[8]ページ先頭

©2009-2026 Movatter.jp