Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Polarization identity

(Redirected fromPolarization identities)
This article is about quadratic forms. For formulas for higher-degree polynomials, seePolarization of an algebraic form.

Inlinear algebra, a branch ofmathematics, thepolarization identity is any one of a family of formulas that express theinner product of twovectors in terms of thenorm of anormed vector space. If anorm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The polarization identity shows that a norm can arise from at most one inner product; however, there exist norms that do not arise from any inner product.

Vectors involved in the polarization identity2x2+2y2=x+y2+xy2.{\displaystyle 2\|x\|^{2}+2\|y\|^{2}=\|x+y\|^{2}+\|x-y\|^{2}.}

The norm associated with anyinner product space satisfies theparallelogram law:x+y2+xy2=2x2+2y2.{\displaystyle \|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}.} In fact, as observed byJohn von Neumann,[1] the parallelogram law characterizes those norms that arise from inner products. Given anormed space(H,){\displaystyle (H,\|\cdot \|)}, the parallelogram law holds for{\displaystyle \|\cdot \|} if and only if there exists an inner product,{\displaystyle \langle \cdot ,\cdot \rangle } onH{\displaystyle H} such thatx2=x, x{\displaystyle \|x\|^{2}=\langle x,\ x\rangle } for allxH,{\displaystyle x\in H,} in which case this inner product is uniquely determined by the norm via the polarization identity.[2][3]

Polarization identities

edit

Anyinner product on a vector space induces a norm by the equationx=x,x.{\displaystyle \|x\|={\sqrt {\langle x,x\rangle }}.} The polarization identities reverse this relationship, recovering the inner product from the norm.Every inner product satisfies:x+y2=x2+y2+2Rex,y for all vectors x,y.{\displaystyle \|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2\operatorname {Re} \langle x,y\rangle \qquad {\text{ for all vectors }}x,y.} 

Solving forRex,y{\displaystyle \operatorname {Re} \langle x,y\rangle }  gives the formulaRex,y=12(x+y2x2y2).{\displaystyle \operatorname {Re} \langle x,y\rangle ={\frac {1}{2}}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right).}  If the inner product is real thenRex,y=x,y{\displaystyle \operatorname {Re} \langle x,y\rangle =\langle x,y\rangle }  and this formula becomes a polarization identity for real inner products.

Real vector spaces

edit

If the vector space is over thereal numbers then the polarization identities are:[4]x,y=14(x+y2xy2)=12(x+y2x2y2)=12(x2+y2xy2).{\displaystyle {\begin{alignedat}{4}\langle x,y\rangle &={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)\\[3pt]&={\frac {1}{2}}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)\\[3pt]&={\frac {1}{2}}\left(\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}\right).\\[3pt]\end{alignedat}}} 

These various forms are all equivalent by theparallelogram law:[proof 1]2x2+2y2=x+y2+xy2.{\displaystyle 2\|x\|^{2}+2\|y\|^{2}=\|x+y\|^{2}+\|x-y\|^{2}.} 

This further implies thatLp{\displaystyle L^{p}}  class is not aHilbert space wheneverp2{\displaystyle p\neq 2} , as the parallelogram law is not satisfied. For the sake of counterexample, considerx=1A{\displaystyle x=1_{A}}  andy=1B{\displaystyle y=1_{B}}  for any two disjoint subsetsA,B{\displaystyle A,B}  of general domainΩRn{\displaystyle \Omega \subset \mathbb {R} ^{n}}  and compute the measure of both sets under parallelogram law.

Complex vector spaces

edit

For vector spaces over thecomplex numbers, the above formulas are not quite correct because they do not describe theimaginary part of the (complex) inner product. However, an analogous expression does ensure that both real and imaginary parts are retained. The complex part of the inner product depends on whether it isantilinear in the first or the second argument. The notationx|y,{\displaystyle \langle x|y\rangle ,}  which is commonly used in physics will be assumed to beantilinear in thefirst argument whilex,y,{\displaystyle \langle x,\,y\rangle ,}  which is commonly used in mathematics, will be assumed to be antilinear in itssecond argument. They are related by the formula:x,y=y|x for all x,yH.{\displaystyle \langle x,\,y\rangle =\langle y\,|\,x\rangle \quad {\text{ for all }}x,y\in H.} 

Thereal part of any inner product (no matter which argument is antilinear and no matter if it is real or complex) is a symmetric bilinear map that for anyx,yH{\displaystyle x,y\in H}  is always equal to:[4][proof 1]R(x,y):=Rexy=Rex,y=14(x+y2xy2)=12(x+y2x2y2)=12(x2+y2xy2).{\displaystyle {\begin{alignedat}{4}R(x,y):&=\operatorname {Re} \langle x\mid y\rangle =\operatorname {Re} \langle x,y\rangle \\&={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)\\&={\frac {1}{2}}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)\\[3pt]&={\frac {1}{2}}\left(\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}\right).\\[3pt]\end{alignedat}}} 

It is always asymmetric map, meaning that[proof 1]R(x,y)=R(y,x) for all x,yH,{\displaystyle R(x,y)=R(y,x)\quad {\text{ for all }}x,y\in H,} and it also satisfies:[proof 1]R(ix,y)=R(x,iy) for all x,yH,{\displaystyle R(ix,y)=-R(x,iy)\quad {\text{ for all }}x,y\in H,} which in plain English says that to move a factor ofi{\displaystyle i}  to the other argument, introduce a negative sign. These properties can be proven either from the properties of inner products directly or from properties of norms by using the polarization identity.

Proof of properties ofR{\displaystyle R}  using the polarization identity

LetR(x,y):=14(x+y2xy2).{\displaystyle R(x,y):={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}\right).}  ThenR(y,x)=14(y+x2yx2)=14(x+y2xy2)=R(x,y),{\displaystyle R(y,x)={\frac {1}{4}}\left(\|y+x\|^{2}-\|y-x\|^{2}\right)={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=R(x,y),} 

which proves thatR(x,y)=R(y,x){\displaystyle R(x,y)=R(y,x)} .

Additionally,

R(ix,y)=14(ix+y2ixy2){\displaystyle R(ix,y)={\frac {1}{4}}\left(\|ix+y\|^{2}-\|ix-y\|^{2}\right)} 

=14(x+(1/i)y2x(1/i)y2){\displaystyle ={\frac {1}{4}}\left(\|x+(1/i)y\|^{2}-\|x-(1/i)y\|^{2}\right)} 


=14(xiy2x+iy2){\displaystyle ={\frac {1}{4}}\left(\|x-iy\|^{2}-\|x+iy\|^{2}\right)} 

=14(x+iy2xiy2){\displaystyle =-{\frac {1}{4}}\left(\|x+iy\|^{2}-\|x-iy\|^{2}\right)} 

=R(x,iy),{\displaystyle =-R(x,iy),} 

which proves thatR(ix,y)=R(x,iy).{\displaystyle R(ix,y)=-R(x,iy).} {\displaystyle \blacksquare } 

Unlike its real part, theimaginary part of a complex inner product depends on which argument is antilinear.

Antilinear in first argument

The polarization identities for the inner productx|y,{\displaystyle \langle x\,|\,y\rangle ,}  which isantilinear in thefirst argument, are

x|y=14(x+y2xy2ix+iy2+ixiy2)=14k=03ikx+(i)ky2=R(x,y)iR(x,iy)=R(x,y)+iR(ix,y){\displaystyle {\begin{alignedat}{4}\langle x\,|\,y\rangle &={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}-i\|x+iy\|^{2}+i\|x-iy\|^{2}\right)\\&={\frac {1}{4}}\sum _{k=0}^{3}i^{k}\|x+(-i)^{k}y\|^{2}\\&=R(x,y)-iR(x,iy)\\&=R(x,y)+iR(ix,y)\\\end{alignedat}}} 

wherex,yH.{\displaystyle x,y\in H.}  The second to last equality is similar to the formulaexpressing a linear functionalφ{\displaystyle \varphi }  in terms of its real part:φ(y)=Reφ(y)i(Reφ)(iy).{\displaystyle \varphi (y)=\operatorname {Re} \varphi (y)-i(\operatorname {Re} \varphi )(iy).} 

Antilinear in second argument

The polarization identities for the inner productx, y,{\displaystyle \langle x,\ y\rangle ,}  which isantilinear in thesecond argument, follows from that ofx|y{\displaystyle \langle x\,|\,y\rangle }  by the relationship:x, y:=y|x=x|y¯ for all x,yH.{\displaystyle \langle x,\ y\rangle :=\langle y\,|\,x\rangle ={\overline {\langle x\,|\,y\rangle }}\quad {\text{ for all }}x,y\in H.}  So for anyx,yH,{\displaystyle x,y\in H,} [4]

x,y=14(x+y2xy2+ix+iy2ixiy2)=R(x,y)+iR(x,iy)=R(x,y)iR(ix,y).{\displaystyle {\begin{alignedat}{4}\langle x,\,y\rangle &={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+iy\|^{2}-i\|x-iy\|^{2}\right)\\&=R(x,y)+iR(x,iy)\\&=R(x,y)-iR(ix,y).\\\end{alignedat}}} 

This expression can be phrased symmetrically as:[5]x,y=14k=03ikx+iky2.{\displaystyle \langle x,y\rangle ={\frac {1}{4}}\sum _{k=0}^{3}i^{k}\left\|x+i^{k}y\right\|^{2}.} 

Summary of both cases

Thus ifR(x,y)+iI(x,y){\displaystyle R(x,y)+iI(x,y)}  denotes the real and imaginary parts of some inner product's value at the point(x,y)H×H{\displaystyle (x,y)\in H\times H}  of its domain, then its imaginary part will be:I(x,y) = { R(ix,y) if antilinear in the 1st argument R(x,iy) if antilinear in the 2nd argument{\displaystyle I(x,y)~=~{\begin{cases}~R({\color {red}i}x,y)&\qquad {\text{ if antilinear in the }}{\color {red}1}{\text{st argument}}\\~R(x,{\color {blue}i}y)&\qquad {\text{ if antilinear in the }}{\color {blue}2}{\text{nd argument}}\\\end{cases}}} where the scalari{\displaystyle i}  is always located in the same argument that the inner product is antilinear in.

UsingR(ix,y)=R(x,iy){\displaystyle R(ix,y)=-R(x,iy)} , the above formula for the imaginary part becomes:I(x,y) = {R(x,iy) if antilinear in the 1st argumentR(ix,y) if antilinear in the 2nd argument{\displaystyle I(x,y)~=~{\begin{cases}-R(x,{\color {black}i}y)&\qquad {\text{ if antilinear in the }}{\color {black}1}{\text{st argument}}\\-R({\color {black}i}x,y)&\qquad {\text{ if antilinear in the }}{\color {black}2}{\text{nd argument}}\\\end{cases}}} 

Reconstructing the inner product

edit

In a normed space(H,),{\displaystyle (H,\|\cdot \|),}  if theparallelogram lawx+y2 + xy2 = 2x2+2y2{\displaystyle \|x+y\|^{2}~+~\|x-y\|^{2}~=~2\|x\|^{2}+2\|y\|^{2}} holds, then there exists a uniqueinner product, {\displaystyle \langle \cdot ,\ \cdot \rangle }  onH{\displaystyle H}  such thatx2=x, x{\displaystyle \|x\|^{2}=\langle x,\ x\rangle }  for allxH.{\displaystyle x\in H.} [4][1]

Proof

We will only give the real case here; the proof for complex vector spaces is analogous.

By the above formulas, if the norm is described by an inner product (as we hope), then it must satisfyx, y=14(x+y2xy2) for all x,yH,{\displaystyle \langle x,\ y\rangle ={\frac {1}{4}}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)\quad {\text{ for all }}x,y\in H,} which may serve as a definition of the unique candidate,{\displaystyle \langle \cdot ,\cdot \rangle }  for the role of a suitable inner product. Thus, the uniqueness is guaranteed.

It remains to prove that this formula indeed defines an inner product and that this inner product induces the norm.{\displaystyle \|\cdot \|.}  Explicitly, the following will be shown:

  1. x,x=x2,xH{\displaystyle \langle x,x\rangle =\|x\|^{2},\quad x\in H} 
  2. x,y=y,x,x,yH{\displaystyle \langle x,y\rangle =\langle y,x\rangle ,\quad x,y\in H} 
  3. x+z,y=x,y+z,y for all x,y,zH,{\displaystyle \langle x+z,y\rangle =\langle x,y\rangle +\langle z,y\rangle \quad {\text{ for all }}x,y,z\in H,} 
  4. αx,y=αx,y for all x,yH and all αR{\displaystyle \langle \alpha x,y\rangle =\alpha \langle x,y\rangle \quad {\text{ for all }}x,y\in H{\text{ and all }}\alpha \in \mathbb {R} } 

(This axiomatization omitspositivity, which is implied by (1) and the fact that{\displaystyle \|\cdot \|}  is a norm.)

For properties (1) and (2), substitute:x,x=14(x+x2xx2)=x2,{\textstyle \langle x,x\rangle ={\frac {1}{4}}\left(\|x+x\|^{2}-\|x-x\|^{2}\right)=\|x\|^{2},}  andxy2=yx2.{\displaystyle \|x-y\|^{2}=\|y-x\|^{2}.} 

For property (3), it is convenient to work in reverse. It remains to show thatx+z+y2x+zy2=?x+y2xy2+z+y2zy2{\displaystyle \|x+z+y\|^{2}-\|x+z-y\|^{2}{\overset {?}{=}}\|x+y\|^{2}-\|x-y\|^{2}+\|z+y\|^{2}-\|z-y\|^{2}} or equivalently,2(x+z+y2+xy2)2(x+zy2+x+y2)=?2z+y22zy2.{\displaystyle 2\left(\|x+z+y\|^{2}+\|x-y\|^{2}\right)-2\left(\|x+z-y\|^{2}+\|x+y\|^{2}\right){\overset {?}{=}}2\|z+y\|^{2}-2\|z-y\|^{2}.} 

Now apply the parallelogram identity:2x+z+y2+2xy2=2x+z2+2y+z2{\displaystyle 2\|x+z+y\|^{2}+2\|x-y\|^{2}=\|2x+z\|^{2}+\|2y+z\|^{2}} 2x+zy2+2x+y2=2x+z2+z2y2{\displaystyle 2\|x+z-y\|^{2}+2\|x+y\|^{2}=\|2x+z\|^{2}+\|z-2y\|^{2}} Thus it remains to verify:2x+z2+2y+z2(2x+z2+z2y2)=?2z+y22zy2{\displaystyle {\cancel {\|2x+z\|^{2}}}+\|2y+z\|^{2}-({\cancel {\|2x+z\|^{2}}}+\|z-2y\|^{2}){\overset {?}{{}={}}}2\|z+y\|^{2}-2\|z-y\|^{2}} 2y+z2z2y2=?2z+y22zy2{\displaystyle \|2y+z\|^{2}-\|z-2y\|^{2}{\overset {?}{=}}2\|z+y\|^{2}-2\|z-y\|^{2}} 

But the latter claim can be verified by subtracting the following two further applications of the parallelogram identity:2y+z2+z2=2z+y2+2y2{\displaystyle \|2y+z\|^{2}+\|z\|^{2}=2\|z+y\|^{2}+2\|y\|^{2}} z2y2+z2=2zy2+2y2{\displaystyle \|z-2y\|^{2}+\|z\|^{2}=2\|z-y\|^{2}+2\|y\|^{2}} 

Thus (3) holds.

It can be verified by induction that (3) implies (4), as long asαZ.{\displaystyle \alpha \in \mathbb {Z} .}  But "(4) whenαZ{\displaystyle \alpha \in \mathbb {Z} } " implies "(4) whenαQ{\displaystyle \alpha \in \mathbb {Q} } ". And any positive-definite,real-valued,Q{\displaystyle \mathbb {Q} } -bilinear form satisfies theCauchy–Schwarz inequality, so that,{\displaystyle \langle \cdot ,\cdot \rangle }  is continuous. Thus,{\displaystyle \langle \cdot ,\cdot \rangle }  must beR{\displaystyle \mathbb {R} } -linear as well.

Another necessary and sufficient condition for there to exist an inner product that induces a given norm{\displaystyle \|\cdot \|}  is for the norm to satisfyPtolemy's inequality, which is:[6]xyz + yzx  xzy for all vectors x,y,z.{\displaystyle \|x-y\|\,\|z\|~+~\|y-z\|\,\|x\|~\geq ~\|x-z\|\,\|y\|\qquad {\text{ for all vectors }}x,y,z.} 

Applications and consequences

edit

IfH{\displaystyle H}  is a complex Hilbert space thenxy{\displaystyle \langle x\mid y\rangle }  is real if and only if its imaginary part is0=R(x,iy)=14(x+iy2xiy2){\displaystyle 0=R(x,iy)={\frac {1}{4}}\left(\Vert x+iy\Vert ^{2}-\Vert x-iy\Vert ^{2}\right)} , which happens if and only ifx+iy=xiy{\displaystyle \Vert x+iy\Vert =\Vert x-iy\Vert } . Similarly,xy{\displaystyle \langle x\mid y\rangle }  is (purely) imaginary if and only ifx+y=xy{\displaystyle \Vert x+y\Vert =\Vert x-y\Vert } . For example, fromx+ix=|1+i|x=2x=|1i|x=xix{\displaystyle \|x+ix\|=|1+i|\|x\|={\sqrt {2}}\|x\|=|1-i|\|x\|=\|x-ix\|}  it can be concluded thatx|x{\displaystyle \langle x|x\rangle }  is real and thatx|ix{\displaystyle \langle x|ix\rangle }  is purely imaginary.

Isometries

edit

IfA:HZ{\displaystyle A:H\to Z}  is alinearisometry between two Hilbert spaces (soAh=h{\displaystyle \|Ah\|=\|h\|}  for allhH{\displaystyle h\in H} ) thenAh,AkZ=h,kH for all h,kH;{\displaystyle \langle Ah,Ak\rangle _{Z}=\langle h,k\rangle _{H}\quad {\text{ for all }}h,k\in H;} that is, linear isometries preserve inner products.

IfA:HZ{\displaystyle A:H\to Z}  is instead anantilinear isometry thenAh,AkZ=h,kH¯=k,hH for all h,kH.{\displaystyle \langle Ah,Ak\rangle _{Z}={\overline {\langle h,k\rangle _{H}}}=\langle k,h\rangle _{H}\quad {\text{ for all }}h,k\in H.} 

Relation to the law of cosines

edit

The second form of the polarization identity can be written asuv2=u2+v22(uv).{\displaystyle \|{\textbf {u}}-{\textbf {v}}\|^{2}=\|{\textbf {u}}\|^{2}+\|{\textbf {v}}\|^{2}-2({\textbf {u}}\cdot {\textbf {v}}).} 

This is essentially a vector form of thelaw of cosines for thetriangle formed by the vectorsu{\displaystyle {\textbf {u}}} ,v{\displaystyle {\textbf {v}}} , anduv{\displaystyle {\textbf {u}}-{\textbf {v}}} . In particular,uv=uvcosθ,{\displaystyle {\textbf {u}}\cdot {\textbf {v}}=\|{\textbf {u}}\|\,\|{\textbf {v}}\|\cos \theta ,} whereθ{\displaystyle \theta }  is the angle between the vectorsu{\displaystyle {\textbf {u}}}  andv{\displaystyle {\textbf {v}}} .

The equation is numerically unstable if u and v are similar because ofcatastrophic cancellation and should be avoided for numeric computation.

Derivation

edit

The basic relation between the norm and thedot product is given by the equationv2=vv.{\displaystyle \|{\textbf {v}}\|^{2}={\textbf {v}}\cdot {\textbf {v}}.} 

Thenu+v2=(u+v)(u+v)=(uu)+(uv)+(vu)+(vv)=u2+v2+2(uv),{\displaystyle {\begin{aligned}\|{\textbf {u}}+{\textbf {v}}\|^{2}&=({\textbf {u}}+{\textbf {v}})\cdot ({\textbf {u}}+{\textbf {v}})\\[3pt]&=({\textbf {u}}\cdot {\textbf {u}})+({\textbf {u}}\cdot {\textbf {v}})+({\textbf {v}}\cdot {\textbf {u}})+({\textbf {v}}\cdot {\textbf {v}})\\[3pt]&=\|{\textbf {u}}\|^{2}+\|{\textbf {v}}\|^{2}+2({\textbf {u}}\cdot {\textbf {v}}),\end{aligned}}} and similarlyuv2=u2+v22(uv).{\displaystyle \|{\textbf {u}}-{\textbf {v}}\|^{2}=\|{\textbf {u}}\|^{2}+\|{\textbf {v}}\|^{2}-2({\textbf {u}}\cdot {\textbf {v}}).} 

Forms (1) and (2) of the polarization identity now follow by solving these equations foruv{\displaystyle {\textbf {u}}\cdot {\textbf {v}}} , while form (3) follows from subtracting these two equations. (Adding these two equations together gives the parallelogram law.)

Generalizations

edit

Jordan–von Neumann theorems

edit

The standardJordanvon Neumann theorem, as stated previously, is that the if a norm satisfies the parallelogram law, then it can be induced by an inner product defined by the polarization identity. There are variants of the theorem.[7]

Define various senses of orthogonality:

LetV{\textstyle V}  be a vector space over the real or complex numbers. Let{\textstyle \|\cdot \|}  be a norm overV{\textstyle V} . We consider conditions for which the norm is induced by an inner product. In the following statements, whenever a scalar appears, the scalar may be restricted to be merely real, even whenV{\textstyle V}  is over the complex numbers.

For the real vector space, there is also the condition:

Proof

Since the internalJohn ellipseE{\textstyle E}  is unique, for any bijective linear mapT{\textstyle T}  that preserves the unit circle, it must haveTE=E{\textstyle TE=E} . SinceE{\textstyle E}  must touch the circle at some pointx{\textstyle x} , we may mapx{\textstyle x}  to any other pointy{\textstyle y}  on the circle, thus every pointy{\textstyle y}  touches the ellipseE{\textstyle E} . Thus the circle is the ellipse.

The Banach-Mazur rotation problem: Given aseparableBanach spaceV{\textstyle V}  such that for any two unit vectorsx,y,{\textstyle x,y,}  there exists a linear surjective isometryT{\textstyle T}  such thatT(x)=y{\textstyle T(x)=y}  orT(y)=x{\textstyle T(y)=x} , isV{\textstyle V}  isometrically isomorphic to a Hilbert space?

The general case of the problem isopen. When the space is parable finite-dimensional, the answer is yes. In other words, given a finite-dimensional normed vector space over the real or complex numbers, if any point on the unit sphere can be mapped (rotated) to any other point by a linear isometry, then the norm is induced by an inner product.[8]

Symmetric bilinear forms

edit

The polarization identities are not restricted to inner products. IfB{\displaystyle B}  is anysymmetric bilinear form on a vector space, andQ{\displaystyle Q}  is thequadratic form defined byQ(v)=B(v,v),{\displaystyle Q(v)=B(v,v),} then2B(u,v)=Q(u+v)Q(u)Q(v),2B(u,v)=Q(u)+Q(v)Q(uv),4B(u,v)=Q(u+v)Q(uv).{\displaystyle {\begin{aligned}2B(u,v)&=Q(u+v)-Q(u)-Q(v),\\2B(u,v)&=Q(u)+Q(v)-Q(u-v),\\4B(u,v)&=Q(u+v)-Q(u-v).\end{aligned}}} 

The so-calledsymmetrization map generalizes the latter formula, replacingQ{\displaystyle Q}  by a homogeneous polynomial of degreek{\displaystyle k}  defined byQ(v)=B(v,,v),{\displaystyle Q(v)=B(v,\ldots ,v),}  whereB{\displaystyle B}  is a symmetrick{\displaystyle k} -linear map.[9]

The formulas above even apply in the case where thefield ofscalars hascharacteristic two, though the left-hand sides are all zero in this case. Consequently, in characteristic two there is no formula for a symmetric bilinear form in terms of a quadratic form, and they are in fact distinct notions, a fact which has important consequences inL-theory; for brevity, in this context "symmetric bilinear forms" are often referred to as "symmetric forms".

These formulas also apply to bilinear forms onmodules over acommutative ring, though again one can only solve forB(u,v){\displaystyle B(u,v)}  if 2 is invertible in the ring, and otherwise these are distinct notions. For example, over the integers, one distinguishesintegral quadratic forms from integralsymmetric forms, which are a narrower notion.

More generally, in the presence of a ring involution or where 2 is not invertible, one distinguishesε{\displaystyle \varepsilon } -quadratic forms andε{\displaystyle \varepsilon } -symmetric forms; a symmetric form defines a quadratic form, and the polarization identity (without a factor of 2) from a quadratic form to a symmetric form is called the "symmetrization map", and is not in general an isomorphism. This has historically been a subtle distinction: over the integers it was not until the 1950s that relation between "twos out" (integralquadratic form) and "twos in" (integralsymmetric form) was understood – see discussion atintegral quadratic form; and in thealgebraization ofsurgery theory, Mishchenko originally usedsymmetricL-groups, rather than the correctquadraticL-groups (as in Wall and Ranicki) – see discussion atL-theory.

Homogeneous polynomials of higher degree

edit

Finally, in any of these contexts these identities may be extended tohomogeneous polynomials (that is,algebraic forms) of arbitrarydegree, where it is known as thepolarization formula, and is reviewed in greater detail in the article on thepolarization of an algebraic form.

See also

edit

Notes and references

edit
  1. ^abLax 2002, p. 53.
  2. ^Philippe Blanchard, Erwin Brüning (2003)."Proposition 14.1.2 (Fréchet–von Neumann–Jordan)".Mathematical methods in physics: distributions, Hilbert space operators, and variational methods. Birkhäuser. p. 192.ISBN 0817642285.
  3. ^Gerald Teschl (2009). "Theorem 0.19 (Jordan–von Neumann)".Mathematical methods in quantum mechanics: with applications to Schrödinger operators. American Mathematical Society Bookstore. p. 19.ISBN 978-0-8218-4660-5.
  4. ^abcdSchechter 1996, pp. 601–603.
  5. ^Butler, Jon (20 June 2013)."norm - Derivation of the polarization identities?".Mathematics Stack Exchange.Archived from the original on 14 October 2020. Retrieved2020-10-14. See Harald Hanche-Olson's answer.
  6. ^Apostol, Tom M. (1967)."Ptolemy's Inequality and the Chordal Metric".Mathematics Magazine.40 (5):233–235.doi:10.2307/2688275.JSTOR 2688275.
  7. ^Day, Mahlon M. (1947)."Some Characterizations of Inner-Product Spaces".Transactions of the American Mathematical Society.62 (2):320–337.doi:10.2307/1990458.ISSN 0002-9947.
  8. ^Becerra Guerrero, Julio; Rodríguez-Palacios, A. (2002). "Transitivity of the norm on Banach spaces".Extracta Mathematicae.17 (1):1–58.hdl:10662/18957.MR 1914238.
  9. ^Butler 2013. See Keith Conrad (KCd)'s answer.
  1. ^abcdA proof can befound here.

Bibliography

edit

[8]ページ先頭

©2009-2025 Movatter.jp