ThePan-African orogeny was a series of majorNeoproterozoicorogenic events which related to the formation of thesupercontinentsGondwana andPannotia about 600 million years ago.[1] This orogeny is also known as thePan-Gondwanan orSaldanian Orogeny.[2] The Pan-African orogeny and theGrenville orogeny are the largest known systems of orogenies on Earth.[3] The sum of thecontinental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust.[3]
History and terminology
editThe termPan-African was coined byKennedy 1964 for a tectono-thermal event at about 500 Ma when a series of mobile belts in Africa formed between much older Africancratons. At the time, other terms were used for similar orogenic events on other continents, i.e.Brasiliano in South America;Adelaidean in Australia; andBeardmore in Antarctica.
Later, whenplate tectonics became generally accepted, the termPan-African was extended to all of the supercontinent Gondwana. Because the formation of Gondwana encompassed several continents and extended from the Neoproterozoic to the early Palaeozoic,Pan-African could no longer be considered a single orogeny,[4] but rather an orogenic cycle that included the opening and closing of several large oceans and the collisions of several continental blocks. Furthermore, the Pan-African events are contemporaneous with theCadomian orogeny in Europe and theBaikalian orogeny in Asia, and crust from these areas were probably part of Pannotia (i.e. Gondwana when it first formed) during the Precambrian.[5]
Attempts to correlate the African Pan-African belts with the South AmericanBrasiliano belts on the other side of the Atlantic has in many cases been problematic.[6]
Pan-African belts
editOrogenic belts of the Pan-African system include:
- TheArabian-Nubian Shield, extending from Ethiopia to the southern Levant, it is associated with the opening of theRed Sea.[7]
- TheMozambique Belt, extending from eastAntarctica throughEast Africa up to theArabian-Nubian Shield, formed as a suture between plates during the Pan-African orogeny.[8] The Mozambique ocean began closing between Madagascar-India and theCongo–Tanzania craton between 700 and 580 million years ago, with closure between 600 and 500 million years ago.[9]
- TheZambezi Belt branches off the Mozambique Belt in northern Zimbabwe and extends into Zambia.[10]
- TheDamara Belt is exposed in Namibia between theCongo andKalahari cratons and continues southwards into the coastal Gariep and Saldania Belts and northwards into the Kaoko Belt. It is the result of closure of theAdamastor andDamara oceans and includes two horizons associated with a severe equator-ward glaciation explained by theSnowball Earth hypothesis.[11]
- TheLufilian Arc is most likely a continuation of the Damara Belt in Namibia to which it connects in northern Botswana. It is a broad arc reaching as far north as the southern DRC and Zambia.[10]
- TheGariep andSaldania belts run along the western and southern edge of the Kalahari Craton. Also the result of the closure of the Adamastor Ocean, the marine deposits, seamounts, and,ophiolites they contain were accreted onto the Kalahari margin around 540 Ma. They include the granite atSea Point, Cape Town visited byCharles Darwin in 1836.[12]
- TheKaoko Belt branches north-west from the Damara Belt into Angola. Also produced by the closure of the Adamastor Ocean, this belt includes a shear zone known as the 733–550 Ma-old Puros lineament in southern Angola. It contains 2030–1450 Ma-old, strongly deformedbasement rocks, probably derived from the Congo Craton, mixed with Late Archaean granitoid gneisses of unknown origin. No island arcs or ophiolote are known from the Kaoko Belt.[13]
- TheWest Congo Belt is the product of 999–912 Ma-old rifting along the western margin of the Congo Craton followed by the formation of aforeland basin onto which the belt was deposited 900–570 Ma. In the western beltallochthonous Palaeo- and Mesoproterozoic basement rocks override the foreland sequence. It includes glacial deposits similar to those in the Lufilian Arc and is conjugate to theAraçuaí Belt in Brazil.[13]
- The 3000 km-longTrans–Saharan Belt runs north and east of the more than 2000 Ma-oldWest African Craton bordering theTuareg andNigerian shields. It consists of a strongly deformed pre-Neoproterozoic basement and Neoproterozoic oceanic rocks containing ophiolite,accretionary prisms, arc-related and high-pressure metamorphic rocks dated to 900–520 Ma.[14]
- The Central African belts between the Congo and Nigerian shields consists of Neoproterozoic rocks and deformed granitoids interlayered with wedges of Palaeoproterozoic basement. The southern part is the product of a continental collision during which it was thrusted onto the Congo Craton. The central and northern parts are thrust-and-shear zones correlated with similar structures in Brazil. The belts in Central Africa continue east as the Oubanguide Belt with which they form theCentral African Shear Zone.[15]
- TheSaharan Metacraton between theHoggar Mountains and theNile river consists of an Archaean-Palaeoproterozoic basement overprinted by Pan-African granitoids.[14]
- TheRokelide Belt passes along the western margin of the ArchaeanMan Shield in the southern West African Craton. It was intensely deformed during the Pan-African orogeny with a peak reached around 560 Ma and can be an accretionary belt.[16]
References
edit- ^Glossary.
- ^van Hinsbergen 2011, p. 148
- ^abRino, S.; Kon, Y.; Sato, W.; Maruyama, S.; Santosh, M.; Zhao, D. (2008). "The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume".Gondwana Research.14 (1–2):51–72.doi:10.1016/j.gr.2008.01.001.
- ^Meert 2003
- ^Kröner & Stern 2004, Introduction, p. 1
- ^Frimmel, Hartwig E. (2010). "Configuration of Pan-African Orogenic Belts in Southwestern Africa". In Gaucher, Claudio; Sial, Alcides; Haverson, Galen (eds.).Neoproterozoic-cambrian tectonics, global change and evolution: a focus on south western Gondwana. Elsevier. pp. 145–151.
- ^Kröner & Stern 2004, pp. 2–4
- ^Cutten 2002.
- ^Grantham, Maboko & Eglington 2003, p. 417–418.
- ^abKröner & Stern 2004, p. 7
- ^Kröner & Stern 2004, pp. 7–8
- ^Kröner & Stern 2004, pp. 8–9
- ^abKröner & Stern 2004, p. 9
- ^abKröner & Stern 2004, pp. 9–10
- ^Kröner & Stern 2004, p. 10
- ^Kröner & Stern 2004, pp. 10–11
Sources
edit- Cutten, Huntly N.C. (October 29, 2002)."The Mozambique Belt, Eastern Africa – Tectonic Evolution of the Mozambique Ocean and Gondwana Amalgamation". The Geological Society of America. Retrieved2011-12-28.
- "Glossary of Plate Tectonic and Paleogeographic Terms"(PDF). Archived fromthe original(PDF) on 2006-06-18. Retrieved2006-04-09. (not available without registration (free))
- Grantham, G.H.; Maboko, M.; Eglington, B.M. (2003)."A review of the evolution of the Mozambique Belt and implications for the amalgamation and dispersal of Rodinia and Gondwana".Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society.ISBN 1-86239-125-4.
- van Hinsbergen, D. J. J. (2011).The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History. Geological Society of London.ISBN 9781862393356. Retrieved6 July 2015.
- Kennedy, W. Q. (1964).The structural differentiation of Africa in the Pan-African (±500 my) tectonic episode. Annual Reports of the Institute of African Geology. Vol. 8. Leeds University. pp. 48–49.
- Kröner, A.; Stern, R. J. (2004)."Pan-African Orogeny". In Selley, R. C.; Cocks, R.; Plimer, I. (eds.).Encyclopedia of Geology. Vol. 1. Amsterdam: Elsevier. pp. 1–12.ISBN 9780126363807. Retrieved31 December 2015.
- Meert, J.G. (2003). "A synopsis of events related to the assembly of eastern Gondwana".Tectonophysics.362 (1–4):1–40.doi:10.1016/S0040-1951(02)00629-7.