Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Numerical range

From Wikipedia, the free encyclopedia
Aspect of a numerical matrix

In themathematical field oflinear algebra andconvex analysis, thenumerical range orfield of values orWertvorrat orWertevorrat of acomplexn×n{\displaystyle n\times n}matrixA is the set

W(A)={xAxxxxCn, x0}={x,AxxCn, x2=1}{\displaystyle W(A)=\left\{{\frac {\mathbf {x} ^{*}A\mathbf {x} }{\mathbf {x} ^{*}\mathbf {x} }}\mid \mathbf {x} \in \mathbb {C} ^{n},\ \mathbf {x} \neq 0\right\}=\left\{\langle \mathbf {x} ,A\mathbf {x} \rangle \mid \mathbf {x} \in \mathbb {C} ^{n},\ \|\mathbf {x} \|_{2}=1\right\}}

wherex{\displaystyle \mathbf {x} ^{*}} denotes theconjugate transpose of thevectorx{\displaystyle \mathbf {x} }. The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosingx equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosingx equal to the eigenvectors).

Equivalently, the elements ofW(A){\textstyle W(A)} are of the formtr(AP){\textstyle \operatorname {tr} (AP)}, whereP{\textstyle P} is a Hermitianprojection operator fromC2{\textstyle \mathbb {C} ^{2}} to a one-dimensional subspace.

In engineering, numerical ranges are used as a rough estimate ofeigenvalues ofA. Recently, generalizations of the numerical range are used to studyquantum computing.

A related concept is thenumerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.

r(A)=sup{|λ|:λW(A)}=supx2=1|x,Ax|.{\displaystyle r(A)=\sup\{|\lambda |:\lambda \in W(A)\}=\sup _{\|x\|_{2}=1}|\langle \mathbf {x} ,A\mathbf {x} \rangle |.}

Properties

[edit]

Let sum of sets denote asumset.

General properties

  1. The numerical range is therange of theRayleigh quotient.
  2. (Hausdorff–Toeplitz theorem) The numerical range isconvex andcompact.
  3. W(αA+βI)=αW(A)+{β}{\displaystyle W(\alpha A+\beta I)=\alpha W(A)+\{\beta \}} for all square matrixA{\displaystyle A} and complex numbersα{\displaystyle \alpha } andβ{\displaystyle \beta }. HereI{\displaystyle I} is theidentity matrix.
  4. W(A){\displaystyle W(A)} is a subset of the closed right half-plane if and only ifA+A{\displaystyle A+A^{*}} is positive semidefinite.
  5. The numerical rangeW(){\displaystyle W(\cdot )} is the only function on the set of square matrices that satisfies (2), (3) and (4).
  6. W(UAU)=W(A){\displaystyle W(UAU^{*})=W(A)} for any unitaryU{\displaystyle U}.
  7. W(A)=W(A){\displaystyle W(A^{*})=W(A)^{*}}.
  8. IfA{\displaystyle A} is Hermitian, thenW(A){\displaystyle W(A)} is on the real line. IfA{\displaystyle A} isanti-Hermitian, thenW(A){\displaystyle W(A)} is on the imaginary line.
  9. W(A)={z}{\displaystyle W(A)=\{z\}} if and only ifA=zI{\displaystyle A=zI}.
  10. (Sub-additive)W(A+B)W(A)+W(B){\displaystyle W(A+B)\subseteq W(A)+W(B)}.
  11. W(A){\displaystyle W(A)} contains all theeigenvalues ofA{\displaystyle A}.
  12. The numerical range of a2×2{\displaystyle 2\times 2} matrix is a filledellipse.
  13. W(A){\displaystyle W(A)} is a real line segment[α,β]{\displaystyle [\alpha ,\beta ]} if and only ifA{\displaystyle A} is aHermitian matrix with its smallest and the largest eigenvalues beingα{\displaystyle \alpha } andβ{\displaystyle \beta }.

Normal matrices

  1. IfA{\textstyle A} is normal, andxspan(v1,,vk){\textstyle x\in \operatorname {span} (v_{1},\dots ,v_{k})}, wherev1,,vk{\textstyle v_{1},\ldots ,v_{k}} are eigenvectors ofA{\textstyle A} corresponding toλ1,,λk{\textstyle \lambda _{1},\ldots ,\lambda _{k}}, respectively, thenx,Axhull(λ1,,λk){\textstyle \langle x,Ax\rangle \in \operatorname {hull} \left(\lambda _{1},\ldots ,\lambda _{k}\right)}.
  2. IfA{\displaystyle A} is a normal matrix thenW(A){\displaystyle W(A)} is the convex hull of its eigenvalues.
  3. Ifα{\displaystyle \alpha } is a sharp point on the boundary ofW(A){\displaystyle W(A)}, thenα{\displaystyle \alpha } is anormal eigenvalue ofA{\displaystyle A}.

Numerical radius

  1. r(){\displaystyle r(\cdot )} is aunitarily invariant norm on the space ofn×n{\displaystyle n\times n} matrices.
  2. r(A)Aop2r(A){\displaystyle r(A)\leq \|A\|_{\operatorname {op} }\leq 2r(A)}, whereop{\displaystyle \|\cdot \|_{\operatorname {op} }} denotes theoperator norm.[1][2][3][4]
  3. r(A)=Aop{\displaystyle r(A)=\|A\|_{\operatorname {op} }} if (but not only if)A{\displaystyle A} is normal.
  4. r(An)r(A)n{\displaystyle r(A^{n})\leq r(A)^{n}}.

Proofs

[edit]

Most of the claims are obvious. Some are not.

General properties

[edit]
Proof of (13)

IfA{\textstyle A} is Hermitian, then it is normal, so it is the convex hull of its eigenvalues, which are all real.

Conversely, assumeW(A){\textstyle W(A)} is on the real line. DecomposeA=B+C{\textstyle A=B+C}, whereB{\textstyle B} is a Hermitian matrix, andC{\textstyle C} an anti-Hermitian matrix. SinceW(C){\textstyle W(C)} is on the imaginary line, ifC0{\textstyle C\neq 0}, thenW(A){\textstyle W(A)} would stray from the real line. ThusC=0{\textstyle C=0}, andA{\textstyle A} is Hermitian.

The following proof is due to[5]

Proof of (12)

The elements ofW(A){\textstyle W(A)} are of the formtr(AP){\textstyle \operatorname {tr} (AP)}, whereP{\textstyle P} is projection fromC2{\textstyle \mathbb {C} ^{2}} to a one-dimensional subspace.

The space of all one-dimensional subspaces ofC2{\textstyle \mathbb {C} ^{2}} isPC1{\textstyle \mathbb {P} \mathbb {C} ^{1}}, which is a 2-sphere. The image of a 2-sphere under a linear projection is a filled ellipse.

In more detail, suchP{\textstyle P} are of the form12I+12[cos2θeiϕsin2θeiϕsin2θcos2θ]=12[1+zx+iyxiy1z]{\displaystyle {\frac {1}{2}}I+{\frac {1}{2}}{\begin{bmatrix}\cos 2\theta &e^{i\phi }\sin 2\theta \\e^{-i\phi }\sin 2\theta &-\cos 2\theta \end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1+z&x+iy\\x-iy&1-z\end{bmatrix}}} wherex,y,z{\textstyle x,y,z}, satisfyingx2+y2+z2=1{\textstyle x^{2}+y^{2}+z^{2}=1}, is a point on the unit 2-sphere.

Therefore, the elements ofW(A){\textstyle W(A)}, regarded as elements ofR2{\textstyle \mathbb {R} ^{2}} is the composition of two real linear maps(x,y,z)12[1+zx+iyxiy1z]{\textstyle (x,y,z)\mapsto {\frac {1}{2}}{\begin{bmatrix}1+z&x+iy\\x-iy&1-z\end{bmatrix}}} andMtr(AM){\textstyle M\mapsto \operatorname {tr} (AM)}, which maps the 2-sphere to a filled ellipse.

Proof of (2)

W(A){\textstyle W(A)} is the image of a continuous mapxx,Ax{\textstyle x\mapsto \langle x,Ax\rangle } from thePCn{\displaystyle \mathbb {PC} ^{n}}, so it is compact.

Given two complex nonzero vectorsx,y{\textstyle x,y}, letPx,Py{\textstyle P_{x},P_{y}} be their corresponding Hermitian projectors fromCn{\textstyle \mathbb {C} ^{n}} to their respective spans. LetP{\textstyle P} be the Hermitian projector to the span of both. We have thatPAP{\textstyle P^{*}AP} is an operator onSpan(x,y){\textstyle \operatorname {Span} (x,y)}.

Therefore, the “restricted numerical range” ofPAP{\textstyle P^{*}AP}, defined by{Tr(PAPPz):zSpan(x,y),z0}{\textstyle \{\operatorname {Tr} (P^{*}APP_{z}):z\in \operatorname {Span} (x,y),z\neq 0\}}, is a closed ellipse, according to (12). It is also the case that ifzSpan(x,y){\textstyle z\in \operatorname {Span} (x,y)} is nonzero, thenTr(PAPPz)=Tr(APPzP)=Tr(APz)W(A){\textstyle \operatorname {Tr} (P^{*}APP_{z})=\operatorname {Tr} (APP_{z}P)=\operatorname {Tr} (AP_{z})\in W(A)}. Therefore, the restricted numerical range is contained in the full numerical range ofA{\textstyle A}.

Thus, ifW(A){\textstyle W(A)} containsTr(APx),Tr(APy){\textstyle \operatorname {Tr} (AP_{x}),\operatorname {Tr} (AP_{y})}, then it contains a closed ellipse that also containsTr(APx),Tr(APy){\textstyle \operatorname {Tr} (AP_{x}),\operatorname {Tr} (AP_{y})}, so it contains the line segment between them.

Proof of (5)

LetW{\textstyle W} satisfy these properties. LetW0{\textstyle W_{0}} be the original numerical range.

Fix some matrixA{\textstyle A}. We show that thesupporting planes ofW(A){\textstyle W(A)} andW0(A){\textstyle W_{0}(A)} are identical. This would then imply thatW(A)=W0(A){\textstyle W(A)=W_{0}(A)} since they are both convex and compact.

By property (4),W(A){\textstyle W(A)} is nonempty. Letz{\textstyle z} be a point on the boundary ofW(A){\textstyle W(A)}, then we can translate and rotate the complex plane so that the point translates to the origin, and the regionW(A){\textstyle W(A)} falls entirely withinC+{\textstyle \mathbb {C} ^{+}}. That is, for someϕR{\textstyle \phi \in \mathbb {R} }, the seteiϕ(W(A)z){\textstyle e^{i\phi }(W(A)-z)} lies entirely withinC+{\textstyle \mathbb {C} ^{+}}, while for anyt>0{\textstyle t>0}, the seteiϕ(W(A)z)tI{\textstyle e^{i\phi }(W(A)-z)-tI} does not lie entirely inC+{\textstyle \mathbb {C} ^{+}}.

The two properties ofW{\textstyle W} then imply thateiϕ(Az)+eiϕ(Az)0{\displaystyle e^{i\phi }(A-z)+e^{-i\phi }(A-z)^{*}\succeq 0} and that inequality is sharp, meaning thateiϕ(Az)+eiϕ(Az){\textstyle e^{i\phi }(A-z)+e^{-i\phi }(A-z)^{*}} has a zero eigenvalue. This is a complete characterization of the supporting planes ofW(A){\textstyle W(A)}.

The same argument applies toW0(A){\textstyle W_{0}(A)}, so they have the same supporting planes.

Normal matrices

[edit]
Proof of (1), (2)

For (2), ifA{\textstyle A} is normal, then it has a full eigenbasis, so it reduces to (1).

SinceA{\textstyle A} is normal, by the spectral theorem, there exists a unitary matrixU{\textstyle U} such thatA=UDU{\textstyle A=UDU^{*}}, whereD{\textstyle D} is a diagonal matrix containing the eigenvaluesλ1,λ2,,λn{\textstyle \lambda _{1},\lambda _{2},\ldots ,\lambda _{n}} ofA{\textstyle A}.

Letx=c1v1+c2v2++ckvk{\textstyle x=c_{1}v_{1}+c_{2}v_{2}+\cdots +c_{k}v_{k}}. Using the linearity of the inner product, thatAvj=λjvj{\textstyle Av_{j}=\lambda _{j}v_{j}}, and that{vi}{\textstyle \left\{v_{i}\right\}} are orthonormal, we have:

x,Ax=i,j=1kcicjvi,λjvj=i=1k|ci|2λihull(λ1,,λk){\displaystyle \langle x,Ax\rangle =\sum _{i,j=1}^{k}c_{i}^{*}c_{j}\left\langle v_{i},\lambda _{j}v_{j}\right\rangle =\sum _{i=1}^{k}\left|c_{i}\right|^{2}\lambda _{i}\in \operatorname {hull} \left(\lambda _{1},\ldots ,\lambda _{k}\right)}

Proof (3)

By affineness ofW{\textstyle W}, we can translate and rotate the complex plane, so that we reduce to the case whereW(A){\textstyle \partial W(A)} has a sharp point at0{\textstyle 0}, and that the two supporting planes at that point both make an angleϕ1,ϕ2{\textstyle \phi _{1},\phi _{2}} with the imaginary axis, such thatϕ1<ϕ2,eiϕ1eiϕ2{\textstyle \phi _{1}<\phi _{2},e^{i\phi _{1}}\neq e^{i\phi _{2}}} since the point is sharp.

Since0W(A){\textstyle 0\in W(A)}, there exists a unit vectorx0{\textstyle x_{0}} such thatx0Ax0=0{\textstyle x_{0}^{*}Ax_{0}=0}.

By general property (4), the numerical range lies in the sectors defined by:Re(eiθx,Ax)0for all θ[ϕ1,ϕ2] and nonzero xCn.{\displaystyle \operatorname {Re} \left(e^{i\theta }\langle x,Ax\rangle \right)\geq 0\quad {\text{for all }}\theta \in [\phi _{1},\phi _{2}]{\text{ and nonzero }}x\in \mathbb {C} ^{n}.} Atx=x0{\textstyle x=x_{0}}, the directional derivative in any directiony{\textstyle y} must vanish to maintain non-negativity. Specifically:
ddtRe(eiθx0+ty,A(x0+ty))|t=0=0yCn,θ[ϕ1,ϕ2].{\displaystyle \left.{\frac {d}{dt}}\operatorname {Re} \left(e^{i\theta }\langle x_{0}+ty,A(x_{0}+ty)\rangle \right)\right|_{t=0}=0\quad \forall y\in \mathbb {C} ^{n},\theta \in [\phi _{1},\phi _{2}].} Expanding this derivative:
Re(eiθ(y,Ax0+x0,Ay))=0yCn,θ[ϕ1,ϕ2].{\displaystyle \operatorname {Re} \left(e^{i\theta }\left(\langle y,Ax_{0}\rangle +\langle x_{0},Ay\rangle \right)\right)=0\quad \forall y\in \mathbb {C} ^{n},\theta \in [\phi _{1},\phi _{2}].}

Since the above holds for allθ[ϕ1,ϕ2]{\textstyle \theta \in [\phi _{1},\phi _{2}]}, we must have:y,Ax0+x0,Ay=0yCn.{\displaystyle \langle y,Ax_{0}\rangle +\langle x_{0},Ay\rangle =0\quad \forall y\in \mathbb {C} ^{n}.}

For anyyCn{\textstyle y\in \mathbb {C} ^{n}} andαC{\textstyle \alpha \in \mathbb {C} }, substituteαy{\textstyle \alpha y} into the equation:αy,Ax0+αx0,Ay=0.{\displaystyle \alpha \langle y,Ax_{0}\rangle +\alpha ^{*}\langle x_{0},Ay\rangle =0.} Chooseα=1{\textstyle \alpha =1} andα=i{\textstyle \alpha =i}, then simplify, we obtainy,Ax0=0{\displaystyle \langle y,Ax_{0}\rangle =0} for ally{\displaystyle y}, thusAx0=0{\textstyle Ax_{0}=0}.

Numerical radius

[edit]
Proof of (2)

Letv=argmaxx2=1|x,Ax|{\textstyle v=\arg \max _{\|x\|_{2}=1}|\langle x,Ax\rangle |}. We haver(A)=|v,Av|{\textstyle r(A)=|\langle v,Av\rangle |}.

By Cauchy–Schwarz,|v,Av|v2Av2=Av2Aop{\displaystyle |\langle v,Av\rangle |\leq \|v\|_{2}\|Av\|_{2}=\|Av\|_{2}\leq \|A\|_{op}}

For the other one, letA=B+iC{\textstyle A=B+iC}, whereB,C{\textstyle B,C} are Hermitian.AopBop+Cop{\displaystyle \|A\|_{op}\leq \|B\|_{op}+\|C\|_{op}}

SinceW(B){\textstyle W(B)} is on the real line, andW(iC){\textstyle W(iC)} is on the imaginary line, the extremal points ofW(B),W(iC){\textstyle W(B),W(iC)} appear inW(A){\textstyle W(A)}, shifted, thus bothBop=r(B)r(A),Cop=r(iC)r(A){\textstyle \|B\|_{op}=r(B)\leq r(A),\|C\|_{op}=r(iC)\leq r(A)}.

Generalisations

[edit]

Higher-rank numerical range

[edit]

The numerical range is equivalent to the following definition:W(A)={λC:PMP=λP for some Hermitian projector P of rank 1}{\displaystyle W(A)=\{\lambda \in \mathbb {C} :PMP=\lambda P{\text{ for some Hermitian projector }}P{\text{ of rank }}1\}}This allows a generalization tohigher-rank numerical ranges, one for eachk=1,2,3,{\displaystyle k=1,2,3,\dots }:[6]Wk(A)={λC:PMP=λP for some Hermitian projector P of rank k}{\displaystyle W_{k}(A)=\{\lambda \in \mathbb {C} :PMP=\lambda P{\text{ for some Hermitian projector }}P{\text{ of rank }}k\}}Wk(A){\displaystyle W_{k}(A)} is always closed and convex,[7][8] but it might be empty. It is guaranteed to be nonempty ifk<n/3+1{\displaystyle k<n/3+1}, and there exists someA{\displaystyle A} such thatWk(A){\displaystyle W_{k}(A)} is empty ifkn/3+1{\displaystyle k\geq n/3+1}.[9]

See also

[edit]

Bibliography

[edit]

Books

Papers

References

[edit]
  1. ^""well-known" inequality for numerical radius of an operator".StackExchange.
  2. ^"Upper bound for norm of Hilbert space operator".StackExchange.
  3. ^"Inequalities for numerical radius of complex Hilbert space operator".StackExchange.
  4. ^Hilary Priestley."B4b hilbert spaces: extended synopses 9. Spectral theory"(PDF).In fact, ‖T‖ = max(−mT , MT) = wT. This fails for non-self-adjoint operators, but wT ≤ ‖T‖ ≤ 2wT in the complex case.
  5. ^Davis, Chandler (June 1971)."The Toeplitz-Hausdorff Theorem Explained".Canadian Mathematical Bulletin.14 (2):245–246.doi:10.4153/CMB-1971-042-7.ISSN 0008-4395.
  6. ^Choi, Man-Duen; Kribs, David W.; Życzkowski, Karol (October 2006)."Higher-rank numerical ranges and compression problems".Linear Algebra and its Applications.418 (2–3):828–839.doi:10.1016/j.laa.2006.03.019.
  7. ^Li, Chi-Kwong; Sze, Nung-Sing (2008)."Canonical Forms, Higher Rank Numerical Ranges, Totally Isotropic Subspaces, and Matrix Equations".Proceedings of the American Mathematical Society.136 (9):3013–3023.ISSN 0002-9939.
  8. ^Woerdeman, Hugo J. (2008-01-01)."The higher rank numerical range is convex".Linear and Multilinear Algebra.56 (1–2):65–67.doi:10.1080/03081080701352211.ISSN 0308-1087.
  9. ^Li, Chi-Kwong; Poon, Yiu-Tung; Sze, Nung-Sing (2009-06-01)."Condition for the higher rank numerical range to be non-empty".Linear and Multilinear Algebra.57 (4):365–368.arXiv:0706.1540.doi:10.1080/03081080701786384.ISSN 0308-1087.
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Numerical_range&oldid=1329513606"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp