Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Nuclear artillery

Nuclear artillery is a subset of limited-yieldtactical nuclear weapons, in particular those weapons that are launched from the ground at battlefield targets. Nuclear artillery is commonly associated withshells delivered by acannon, but in a technical sense short-rangeartillery rockets ortactical ballistic missiles are also included.

Upshot–Knothole Grable, a 1953 test of a nuclear artillery projectile at theNevada Test Site (photo depicts an artillery piece with a 280 mm bore (11 inch), and the explosion of its artillery shell at a distance of 10 km (6.2 mi))
Video of Upshot–Knothole Grable test

The development of nuclear artillery was part of a broad push by nuclear weapons countries to develop nuclear weapons which could be used tactically against enemy armies in the field (as opposed to strategic uses against cities, military bases, and heavy industry). Nuclear artillery was both developed and deployed by a small group ofstates, including theUnited States, theSoviet Union, and France. The United Kingdom planned and partially developed such weapon systems (theBlue Water missile and theYellow Anvil artillery shell) but did not put them into production.

A second group of states has derivative association with nuclear artillery. These nations fielded artillery units trained and equipped to use nuclear weapons, but did not control the devices themselves. Instead, the devices were held by embedded custodial units of the developing countries. These custodial units retained control of the nuclear weapons until they were released for use in a crisis. This second group has included such North Atlantic Treaty Organisation (NATO) countries asBelgium,Canada,West Germany,Greece,Italy, theNetherlands,Turkey, and theUnited Kingdom.

Today, nuclear artillery has been almost entirely replaced with mobiletactical ballistic missile launchers, carrying missiles with nuclear warheads.

The United States

edit
 
Weapons designers and a full-sizeW48 155 mm artillery shell mockup

United States developments resulted in nuclear weapons for various artillery systems. After the short-lived M65 Atomic Cannon, standard howitzers were used. Delivery systems include, in approximate order of development:

 
280 mm "Atomic Annie" firing theShot GRABLE, May 25, 1953

The first artillery test was on May 25, 1953, at theNevada Test Site. Fired as part ofOperation Upshot–Knothole and codenamedShot GRABLE, a 280 mm (11 inch) shell with agun-type fission warhead was fired 10,000 m (6.2 miles) and detonated 160 m (525 ft) above the ground with an estimated yield of 15kilotons.[1] This was the only nuclear artillery shell ever actually fired in the world. The shell was 1,384 mm (4.5 ft) long and weighed 365 kg (805 lb). It was fired from a special, very large artillery piece, nicknamed "Atomic Annie", built by the Artillery Test Unit ofFort Sill, Oklahoma. About 3,200 soldiers and civilians were present. The warhead was designated theW9 nuclear warhead and 80 were produced in 1952 to 1953 for the T-124 shell. It was retired in 1957.

 
280 mm 'Atomic Annie' at theVirginia War Museum

Development work continued and resulted in theW19, a 280 mm shell, a longer version of the W9. Only 80 warheads were produced and the system was retired in 1963 coinciding with the introduction of theW48 warhead.

The W48 was 846 mm (33.3 in) long and weighed 58 kg (128 lb); it was in a 155 mm M-45 AFAP (artillery fired atomic projectile) for firing from standard 155 mm howitzer. The fission warhead was a linearimplosion type, consisting of a long cylinder of subcriticalfissile material which is compressed and shaped by explosive into a supercritical sphere. The W48 yielded an explosive force of just 100 tons ofTNT.[2]

The W48 went into production beginning in 1963, and 135 Mod 0 version projectiles were produced by 1968 when it was replaced by the Mod 1. The Mod 1 was manufactured from 1965 through 1969. 925 of these were produced.

Only one type of artillery round other than the W48 was produced in large numbers. It was theW33 nuclear warhead for use in an 8-inch-diameter (203 mm)artillery shell. About 2,000 of these warheads were produced from 1957 to 1965. Each XM422 projectile was 940 mm (37 in) long, it had a projectile weight of 243 lb (110 kg) XM422 were fitted with a triple-deck mechanical time-base fuze. They were to be fired from a standard eight-inch howitzer, if the use of this weapon had ever been called for.

 
A 280 mm Atomic Cannon atAberdeen Proving Ground

The W33's four explosive yields were all greater than that of the W48. M422 projectiles were hand-assembled in the field to provide the required yield, three yielding 5 to 10 kilotons and one with 40 kilotons. There was also a ballistically matched spotting round (HES M424) and a special white bag charge system, M80, composed of charges one through three. The M423 ordnance training rounds and their associated "bird cages" can be seen at the National Atomic Museum inAlbuquerque, New Mexico.

Efforts were made to update the warheads: the 155 mmW74 and 203 mmW75 were developed from about 1970, and they were intended to have a yield of 100 tons or more. These versions were canceled in 1973.[3] A further development program began in the 1980s: theW82, for the XM-785 (a 155 mm shell), was intended to yield up to two kilotons with anenhanced radiation capability. Its development was halted in 1983. A W82-1 fission-only type was designed but was canceled in 1990.

Other developments also continued. In 1958 afusion warhead was developed and tested, theUCRL Swift. It was 622 mm (24.5 in) long, 127 mm (5.0 in) diameter, and weighed 43.5 kg (96 lb). At its test, it yielded only 190 tons; it failed to achieve fusion, and only the initial fission explosion worked correctly. There are unconfirmed reports that work on similar concepts continued into the 1970s and resulted in a one-kiloton warhead design for 5-inch (127 mm) naval gun rounds; these, however, were never deployed as operational weapons.

In 1991, the US unilaterally withdrew its nuclear artillery shells from service, and Russia responded in kind in 1992. The US removed around 1,300 nuclear shells from Europe and reportedly dismantled its last shells by 2004.[4] Focus has since moved to the development ofnuclear bunker buster munitions.

The Soviet Union

edit
 
SM-54 (2А3) "Kondensator".

The Soviet Union's nuclear artillery was operated by the rocket troops and artillery branch of the Soviet ground forces. Delivery units were organic to tank and motor rifle divisions and higher echelons. The control and custody of nuclear weapons was the responsibility of the 12th Main Directorate of the Ministry of Defense and its special units.

The Soviet Union developed and eventually deployed both rocket- and projectile-type nuclear artillery systems. The first system developed was theSM-54 (2А3) 406 mm gun, nicknamed "Kondensator" (Russian: Конденсатор, "Capacitor"); this was released in 1956. A 420 mm breech-loading smoothbore self-propelled mortar,2B1 Oka or "Transformator" (Russian: Трансформатор; "Transformer") was produced in 1957. Testing revealed critical operational defects in both systems and they were not put into full production. The purpose-built weapons suffered from the same deficiencies of the American M-65 Nuclear Cannon to which they are analogous; large, unwieldy, and quickly obsolete.[5]

Meanwhile, rocket- and missile-based delivery systems were concurrently developed. The original systems (theT7 "Scud", the FROG-1 and successors) were first introduced in the late 1950s. Development continued on missile based systems:

After the abortive effort with purpose-built artillery pieces, the Soviet approach to nuclear artillery was that nuclear munitions should be fired by standard guns and howitzers (without modification) in normal artillery units. The first nuclear weapon for use from standard 152 mm artillery, called 3BV3, was finally accepted in 1965. Subsequent weapon designs followed using existing and new technology:

  • 152 mm projectile 3BV3 for self-propelled guns2S19 Msta-S,2S3 Akatsiya,2S5 Giatsint-S, towed gunD-20,2A36 Giatsint-B, and2A65 Msta-B. The yield was 1 kiloton, maximum range 17.4 km (10.8 mi). The nuclear weapon was designated RFYAC-VNIITF and designed by Academician E. I.Zababakhin inSnezhinsk.
  • 180 mm projectile 3BV1 forS-23, MK-3-180 (originally a coast artillery piece), maximum range 45 km (28 mi).
  • 203 mm projectile 3BV2 for self-propelled gun2S7 Pion, and towed howitzer B-4M, range from 18 to 30 km (11 to 19 mi).
  • 240 mm projectile 3BV4 for mortarM-240 and self-propelled2S4 Tyulpan. Normal maximum range 9.5 km (5.9 mi) and 18 km (11 mi) with rocket assistance.

At the end of the Cold War, Russia followed the United States lead and deactivated its nuclear artillery units in 1993. By 2000, Russia reported that nearly all nuclear artillery shells and missile warheads had been destroyed.[6]

France

edit

France's nuclear artillery was provided by Artillery Regiments equipped with thePluton missile system from 1975 to 1993 and with its successor, the longer-rangedHadès missile, from 1991 to 1996.

NATO

edit

Belgium, Canada, Germany, Greece, Italy, the Netherlands, Turkey, and the United Kingdom provided artillery units trained in the correct handling and operation of nuclear weapons and in some cases specialist logistic and security units. Their allocated nuclear weapons were in the custody of US Army Artillery Groups (USAAG) with subordinate US Army Field Artillery Detachments (USAFAD) assigned to the national artillery units. The Groups were part of the59th Ordnance Brigade.

At various times these artillery units operated:

Italy

edit

Nuclear artillery was provided by Artillery Groups equipped with theMGR-1 Honest John free flight rockets,MGM-52 Lance missiles, and 8-inch (203 mm) howitzers.

The Italian units were (links in Italian):

The Netherlands

edit

Nuclear artillery was provided by two Artillery Groups.The Dutch units were:

References

edit
  1. ^Yenne, William ‘Bill’ (2006),Secret Gadgets and Strange Gizmos: High-Tech (and Low-Tech) Innovations of the U.S. Military, MBI, p. 44,ISBN 9781610607445.
  2. ^Bulletin of the Atomic Scientists, Aug 1984, p. 6S.
  3. ^Schwartz, Stephen I.Atomic audit: the costs and consequences of U.S. nuclear weapons since 1940. Brookings Institution Press, 1998.p. 93.
  4. ^DeVolpi, A., V.E. Minkov, G.S. Stanford, V.A. Simonenko, Vadim Simonenko, and George Stanford.Nuclear Shadowboxing: Legacies and Challenges. 2005. p. VA-13.
  5. ^Zaloga, Steven J; Sarson, Peter (1994),IS-2 heavy tank, 1944–1973, Osprey, p. 43,ISBN 9781855323964
  6. ^Goldblat, Jozef (2002),Arms control: the new guide to negotiations and agreements, Sage, p. 100,ISBN 9780761940166.

External links

edit

[8]ページ先頭

©2009-2025 Movatter.jp