Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Multi-index notation

From Wikipedia, the free encyclopedia
Mathematical notation
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Multi-index notation is amathematical notation that simplifies formulas used inmultivariable calculus,partial differential equations and the theory ofdistributions, by generalising the concept of an integerindex to an orderedtuple of indices.

Definition and basic properties

[edit]

Ann-dimensionalmulti-index is ann{\textstyle n}-tuple

α=(α1,α2,,αn){\displaystyle \alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{n})}

ofnon-negative integers (i.e. an element of then{\textstyle n}-dimensionalset ofnatural numbers, denotedN0n{\displaystyle \mathbb {N} _{0}^{n}}).

For multi-indicesα,βN0n{\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}} andx=(x1,x2,,xn)Rn{\displaystyle x=(x_{1},x_{2},\ldots ,x_{n})\in \mathbb {R} ^{n}}, one defines:

Componentwise sum and difference
α±β=(α1±β1,α2±β2,,αn±βn){\displaystyle \alpha \pm \beta =(\alpha _{1}\pm \beta _{1},\,\alpha _{2}\pm \beta _{2},\ldots ,\,\alpha _{n}\pm \beta _{n})}
Partial order
αβαiβii{1,,n}{\displaystyle \alpha \leq \beta \quad \Leftrightarrow \quad \alpha _{i}\leq \beta _{i}\quad \forall \,i\in \{1,\ldots ,n\}}
Sum of components (absolute value)
|α|=α1+α2++αn{\displaystyle |\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}}
Factorial
α!=α1!α2!αn!{\displaystyle \alpha !=\alpha _{1}!\cdot \alpha _{2}!\cdots \alpha _{n}!}
Binomial coefficient
(αβ)=(α1β1)(α2β2)(αnβn)=α!β!(αβ)!{\displaystyle {\binom {\alpha }{\beta }}={\binom {\alpha _{1}}{\beta _{1}}}{\binom {\alpha _{2}}{\beta _{2}}}\cdots {\binom {\alpha _{n}}{\beta _{n}}}={\frac {\alpha !}{\beta !(\alpha -\beta )!}}}
Multinomial coefficient
(kα)=k!α1!α2!αn!=k!α!{\displaystyle {\binom {k}{\alpha }}={\frac {k!}{\alpha _{1}!\alpha _{2}!\cdots \alpha _{n}!}}={\frac {k!}{\alpha !}}} wherek:=|α|N0{\displaystyle k:=|\alpha |\in \mathbb {N} _{0}}.
Power
xα=x1α1x2α2xnαn{\displaystyle x^{\alpha }=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}}.
Higher-orderpartial derivative
α=1α12α2nαn,{\displaystyle \partial ^{\alpha }=\partial _{1}^{\alpha _{1}}\partial _{2}^{\alpha _{2}}\ldots \partial _{n}^{\alpha _{n}},} whereiαi:=αi/xiαi{\displaystyle \partial _{i}^{\alpha _{i}}:=\partial ^{\alpha _{i}}/\partial x_{i}^{\alpha _{i}}} (see also4-gradient). Sometimes the notationDα=α{\displaystyle D^{\alpha }=\partial ^{\alpha }} is also used.[1]

Some applications

[edit]

The multi-index notation allows the extension of many formulae from elementary calculus to the corresponding multi-variable case. Below are some examples. In all the following,x,y,hCn{\displaystyle x,y,h\in \mathbb {C} ^{n}} (orRn{\displaystyle \mathbb {R} ^{n}}),α,νN0n{\displaystyle \alpha ,\nu \in \mathbb {N} _{0}^{n}}, andf,g,aα:CnC{\displaystyle f,g,a_{\alpha }\colon \mathbb {C} ^{n}\to \mathbb {C} } (orRnR{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} }).

Multinomial theorem
(i=1nxi)k=|α|=k(kα)xα{\displaystyle \left(\sum _{i=1}^{n}x_{i}\right)^{k}=\sum _{|\alpha |=k}{\binom {k}{\alpha }}\,x^{\alpha }}
Multi-binomial theorem
(x+y)α=να(αν)xνyαν.{\displaystyle (x+y)^{\alpha }=\sum _{\nu \leq \alpha }{\binom {\alpha }{\nu }}\,x^{\nu }y^{\alpha -\nu }.} Note that, sincex +y is a vector andα is a multi-index, the expression on the left is short for(x1 +y1)α1⋯(xn +yn)αn.
Leibniz formula
For smooth functionsf{\textstyle f} andg{\textstyle g},α(fg)=να(αν)νfανg.{\displaystyle \partial ^{\alpha }(fg)=\sum _{\nu \leq \alpha }{\binom {\alpha }{\nu }}\,\partial ^{\nu }f\,\partial ^{\alpha -\nu }g.}
Taylor series
For ananalytic functionf{\textstyle f} inn{\textstyle n} variables one hasf(x+h)=αN0nαf(x)α!hα.{\displaystyle f(x+h)=\sum _{\alpha \in \mathbb {N} _{0}^{n}}{{\frac {\partial ^{\alpha }f(x)}{\alpha !}}h^{\alpha }}.} In fact, for a smooth enough function, we have the similarTaylor expansionf(x+h)=|α|nαf(x)α!hα+Rn(x,h),{\displaystyle f(x+h)=\sum _{|\alpha |\leq n}{{\frac {\partial ^{\alpha }f(x)}{\alpha !}}h^{\alpha }}+R_{n}(x,h),} where the last term (the remainder) depends on the exact version of Taylor's formula. For instance, for the Cauchy formula (with integral remainder), one getsRn(x,h)=(n+1)|α|=n+1hαα!01(1t)nαf(x+th)dt.{\displaystyle R_{n}(x,h)=(n+1)\sum _{|\alpha |=n+1}{\frac {h^{\alpha }}{\alpha !}}\int _{0}^{1}(1-t)^{n}\partial ^{\alpha }f(x+th)\,dt.}
General linearpartial differential operator
A formal linearN{\textstyle N}-th order partial differential operator inn{\textstyle n} variables is written asP()=|α|Naα(x)α.{\displaystyle P(\partial )=\sum _{|\alpha |\leq N}{a_{\alpha }(x)\partial ^{\alpha }}.}
Integration by parts
For smooth functions withcompact support in a bounded domainΩRn{\displaystyle \Omega \subset \mathbb {R} ^{n}} one hasΩu(αv)dx=(1)|α|Ω(αu)vdx.{\displaystyle \int _{\Omega }u(\partial ^{\alpha }v)\,dx=(-1)^{|\alpha |}\int _{\Omega }{(\partial ^{\alpha }u)v\,dx}.} This formula is used for the definition ofdistributions andweak derivatives.

An example theorem

[edit]

Ifα,βN0n{\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}} are multi-indices andx=(x1,,xn){\displaystyle x=(x_{1},\ldots ,x_{n})}, thenαxβ={β!(βα)!xβαif αβ,0otherwise.{\displaystyle \partial ^{\alpha }x^{\beta }={\begin{cases}{\frac {\beta !}{(\beta -\alpha )!}}x^{\beta -\alpha }&{\text{if}}~\alpha \leq \beta ,\\0&{\text{otherwise.}}\end{cases}}}

Proof

[edit]

The proof follows from thepower rule for theordinary derivative; ifα andβ are in{0,1,2,}{\textstyle \{0,1,2,\ldots \}}, then

dαdxαxβ={β!(βα)!xβαifαβ,0otherwise.{\displaystyle {\frac {d^{\alpha }}{dx^{\alpha }}}x^{\beta }={\begin{cases}{\frac {\beta !}{(\beta -\alpha )!}}x^{\beta -\alpha }&{\hbox{if}}\,\,\alpha \leq \beta ,\\0&{\hbox{otherwise.}}\end{cases}}}1

Supposeα=(α1,,αn){\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})},β=(β1,,βn){\displaystyle \beta =(\beta _{1},\ldots ,\beta _{n})}, andx=(x1,,xn){\displaystyle x=(x_{1},\ldots ,x_{n})}. Then we have thatαxβ=|α|x1α1xnαnx1β1xnβn=α1x1α1x1β1αnxnαnxnβn.{\displaystyle {\begin{aligned}\partial ^{\alpha }x^{\beta }&={\frac {\partial ^{\vert \alpha \vert }}{\partial x_{1}^{\alpha _{1}}\cdots \partial x_{n}^{\alpha _{n}}}}x_{1}^{\beta _{1}}\cdots x_{n}^{\beta _{n}}\\&={\frac {\partial ^{\alpha _{1}}}{\partial x_{1}^{\alpha _{1}}}}x_{1}^{\beta _{1}}\cdots {\frac {\partial ^{\alpha _{n}}}{\partial x_{n}^{\alpha _{n}}}}x_{n}^{\beta _{n}}.\end{aligned}}}

For eachi{\textstyle i} in{1,,n}{\textstyle \{1,\ldots ,n\}}, the functionxiβi{\displaystyle x_{i}^{\beta _{i}}} only depends onxi{\displaystyle x_{i}}. In the above, each partial differentiation/xi{\displaystyle \partial /\partial x_{i}} therefore reduces to the corresponding ordinary differentiationd/dxi{\displaystyle d/dx_{i}}. Hence, from equation (1), it follows thatαxβ{\displaystyle \partial ^{\alpha }x^{\beta }} vanishes ifαi>βi{\textstyle \alpha _{i}>\beta _{i}} for at least onei{\textstyle i} in{1,,n}{\textstyle \{1,\ldots ,n\}}. If this is not the case, i.e., ifαβ{\textstyle \alpha \leq \beta } as multi-indices, thendαidxiαixiβi=βi!(βiαi)!xiβiαi{\displaystyle {\frac {d^{\alpha _{i}}}{dx_{i}^{\alpha _{i}}}}x_{i}^{\beta _{i}}={\frac {\beta _{i}!}{(\beta _{i}-\alpha _{i})!}}x_{i}^{\beta _{i}-\alpha _{i}}}for eachi{\displaystyle i} and the theorem follows.Q.E.D.

See also

[edit]

References

[edit]
  1. ^Reed, M.; Simon, B. (1980).Methods of Modern Mathematical Physics: Functional Analysis I (Revised and enlarged ed.). San Diego: Academic Press. p. 319.ISBN 0-12-585050-6.
  • Saint Raymond, Xavier (1991).Elementary Introduction to the Theory of Pseudodifferential Operators. Chap 1.1 . CRC Press.ISBN 0-8493-7158-9

This article incorporates material from multi-index derivative of a power onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Multi-index_notation&oldid=1174812962"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp