Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Matrix of ones

From Wikipedia, the free encyclopedia
Matrix with every entry equal to one

Inmathematics, amatrix of ones orall-ones matrix is amatrix with every entry equal toone.[1] For example:

J2=[1111],J3=[111111111],J2,5=[1111111111],J1,2=[11].{\displaystyle J_{2}={\begin{bmatrix}1&1\\1&1\end{bmatrix}},\quad J_{3}={\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}},\quad J_{2,5}={\begin{bmatrix}1&1&1&1&1\\1&1&1&1&1\end{bmatrix}},\quad J_{1,2}={\begin{bmatrix}1&1\end{bmatrix}}.\quad }

Some sources call the all-ones matrix theunit matrix,[2] but that term may also refer to theidentity matrix, a different type of matrix.

Avector of ones orall-ones vector is matrix of ones havingrow or column form; it should not be confused withunit vectors.

Properties

[edit]

For ann ×n matrix of onesJ, the following properties hold:

WhenJ is considered as a matrix over thereal numbers, the following additional properties hold:

Applications

[edit]

The all-ones matrix arises in the mathematical field ofcombinatorics, particularly involving the application of algebraic methods tograph theory. For example, ifA is theadjacency matrix of ann-vertexundirected graphG, andJ is the all-ones matrix of the same dimension, thenG is aregular graph if and only ifAJ = JA.[7] As a second example, the matrix appears in some linear-algebraic proofs ofCayley's formula, which gives the number ofspanning trees of acomplete graph, using thematrix tree theorem.

The logicalsquare roots of a matrix of ones,logical matrices whose square is a matrix of ones, can be used to characterize thecentral groupoids. Central groupoids are algebraic structures that obey theidentity(ab)(bc)=b{\displaystyle (a\cdot b)\cdot (b\cdot c)=b}. Finite central groupoids have asquare number of elements, and the corresponding logical matrices exist only for those dimensions.[8]

See also

[edit]

References

[edit]
  1. ^Horn, Roger A.;Johnson, Charles R. (2012), "0.2.8 The all-ones matrix and vector",Matrix Analysis, Cambridge University Press, p. 8,ISBN 9780521839402.
  2. ^Weisstein, Eric W.,"Unit Matrix",MathWorld
  3. ^Stanley, Richard P. (2013),Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, Lemma 1.4, p. 4,ISBN 9781461469988.
  4. ^Stanley (2013);Horn & Johnson (2012),p. 65.
  5. ^abTimm, Neil H. (2002),Applied Multivariate Analysis, Springer texts in statistics, Springer, p. 30,ISBN 9780387227719.
  6. ^Smith, Jonathan D. H. (2011),Introduction to Abstract Algebra, CRC Press, p. 77,ISBN 9781420063721.
  7. ^Godsil, Chris (1993),Algebraic Combinatorics, CRC Press, Lemma 4.1, p. 25,ISBN 9780412041310.
  8. ^Knuth, Donald E. (1970), "Notes on central groupoids",Journal of Combinatorial Theory,8 (4):376–390,doi:10.1016/S0021-9800(70)80032-1,MR 0259000
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Matrix_of_ones&oldid=1330717319"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp