Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Matrix exponential

From Wikipedia, the free encyclopedia
Matrix operation generalizing exponentiation of scalar numbers

Inmathematics, thematrix exponential is amatrix function onsquare matrices analogous to the ordinaryexponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives theexponential map between a matrixLie algebra and the correspondingLie group.

LetX be ann ×nreal orcomplexmatrix. The exponential ofX, denoted byeX orexp(X), is then ×n matrix given by thepower series

eX=k=01k!Xk{\displaystyle e^{X}=\sum _{k=0}^{\infty }{\frac {1}{k!}}X^{k}}

whereX0{\displaystyle X^{0}} is defined to be the identity matrixI{\displaystyle I} with the same dimensions asX{\displaystyle X}, andXk=XXk1{\displaystyle X^{k}=XX^{k-1}}.[1] The series always converges, so the exponential ofX is well-defined.

Equivalently,eX=limk(I+Xk)k{\displaystyle e^{X}=\lim _{k\rightarrow \infty }\left(I+{\frac {X}{k}}\right)^{k}}

for integer-valuedk, whereI is then ×nidentity matrix.

Equivalently, the matrix exponential is provided by the solutionY(t)=eXt{\displaystyle Y(t)=e^{Xt}} of the (matrix) differential equation

ddtY(t)=XY(t),Y(0)=I.{\displaystyle {\frac {d}{dt}}Y(t)=X\,\,Y(t),\quad Y(0)=I.}

WhenX is ann ×ndiagonal matrix thenexp(X) will be ann ×n diagonal matrix with each diagonal element equal to the ordinaryexponential applied to the corresponding diagonal element ofX.

Properties

[edit]

Elementary properties

[edit]

LetX andY ben ×n complex matrices and leta andb be arbitrary complex numbers. We denote then ×nidentity matrix byI and thezero matrix by 0. The matrix exponential satisfies the following properties.[2]

We begin with the properties that are immediate consequences of the definition as a power series:

The next key result is this one:

The proof of this identity is the same as the standard power-series argument for the corresponding identity for the exponential of real numbers. That is to say,as long asX{\displaystyle X} andY{\displaystyle Y} commute, it makes no difference to the argument whetherX{\displaystyle X} andY{\displaystyle Y} are numbers or matrices. It is important to note that this identity typically does not hold ifX{\displaystyle X} andY{\displaystyle Y} do not commute (seeGolden-Thompson inequality below).

Consequences of the preceding identity are the following:

  • eaXebX =e(a +b)X
  • eXeX =I

Using the above results, we can easily verify the following claims. IfX issymmetric theneX is also symmetric, and ifX isskew-symmetric theneX isorthogonal. IfX isHermitian theneX is also Hermitian, and ifX isskew-Hermitian theneX isunitary.

Finally, aLaplace transform of matrix exponentials amounts to theresolvent,0etsetXdt=(sIX)1{\displaystyle \int _{0}^{\infty }e^{-ts}e^{tX}\,dt=(sI-X)^{-1}}for all sufficiently large positive values ofs.

Linear differential equation systems

[edit]
Main article:Matrix differential equation

One of the reasons for the importance of the matrix exponential is that it can be used to solve systems of linearordinary differential equations. The solution ofddty(t)=Ay(t),y(0)=y0,{\displaystyle {\frac {d}{dt}}y(t)=Ay(t),\quad y(0)=y_{0},}whereA is a constant matrix andy is a column vector, is given byy(t)=eAty0.{\displaystyle y(t)=e^{At}y_{0}.}

The matrix exponential can also be used to solve the inhomogeneous equationddty(t)=Ay(t)+z(t),y(0)=y0.{\displaystyle {\frac {d}{dt}}y(t)=Ay(t)+z(t),\quad y(0)=y_{0}.}See the section onapplications below for examples.

There is no closed-form solution for differential equations of the formddty(t)=A(t)y(t),y(0)=y0,{\displaystyle {\frac {d}{dt}}y(t)=A(t)\,y(t),\quad y(0)=y_{0},}whereA is not constant, but theMagnus series gives the solution as an infinite sum.

The determinant of the matrix exponential

[edit]

ByJacobi's formula, for any complex square matrix the followingtrace identity holds:[3]

det(eA)=etr(A) .{\displaystyle \det \left(e^{A}\right)=e^{\operatorname {tr} (A)}~.}

In addition to providing a computational tool, this formula demonstrates that a matrix exponential is always aninvertible matrix. This follows from the fact that the right hand side of the above equation is always non-zero, and sodet(eA) ≠ 0, which implies thateA must be invertible.

In the real-valued case, the formula also exhibits the mapexp:Mn(R)GL(n,R){\displaystyle \exp \colon M_{n}(\mathbb {R} )\to \mathrm {GL} (n,\mathbb {R} )}to not besurjective, in contrast to the complex case mentioned earlier. This follows from the fact that, for real-valued matrices, the right-hand side of the formula is always positive, while there exist invertible matrices with a negative determinant.

Real symmetric matrices

[edit]

The matrix exponential of a real symmetric matrix is positive definite. LetS{\displaystyle S} be ann ×n real symmetric matrix andxRn{\displaystyle x\in \mathbb {R} ^{n}} a column vector. Using the elementary properties of the matrix exponential and of symmetric matrices, we have:

xTeSx=xTeS/2eS/2x=xT(eS/2)TeS/2x=(eS/2x)TeS/2x=eS/2x20.{\displaystyle x^{T}e^{S}x=x^{T}e^{S/2}e^{S/2}x=x^{T}(e^{S/2})^{T}e^{S/2}x=(e^{S/2}x)^{T}e^{S/2}x=\lVert e^{S/2}x\rVert ^{2}\geq 0.}

SinceeS/2{\displaystyle e^{S/2}} is invertible, the equality only holds forx=0{\displaystyle x=0}, and we havexTeSx>0{\displaystyle x^{T}e^{S}x>0} for all non-zerox{\displaystyle x}. HenceeS{\displaystyle e^{S}} is positive definite.

The exponential of sums

[edit]

For any real numbers (scalars)x andy we know that the exponential function satisfiesex+y =exey. The same is true for commuting matrices. If matricesX andY commute (meaning thatXY =YX), then,eX+Y=eXeY.{\displaystyle e^{X+Y}=e^{X}e^{Y}.}

However, for matrices that do not commute the above equality does not necessarily hold.

The Lie product formula

[edit]

Even ifX andY do not commute, the exponentialeX +Y can be computed by theLie product formula[4]eX+Y=limk(e1kXe1kY)k.{\displaystyle e^{X+Y}=\lim _{k\to \infty }\left(e^{{\frac {1}{k}}X}e^{{\frac {1}{k}}Y}\right)^{k}.}

Using a large finitek to approximate the above is basis of the Suzuki-Trotter expansion, often used innumerical time evolution.

The Baker–Campbell–Hausdorff formula

[edit]

In the other direction, ifX andY are sufficiently small (but not necessarily commuting) matrices, we haveeXeY=eZ,{\displaystyle e^{X}e^{Y}=e^{Z},}whereZ may be computed as a series incommutators ofX andY by means of theBaker–Campbell–Hausdorff formula:[5]Z=X+Y+12[X,Y]+112[X,[X,Y]]112[Y,[X,Y]]+,{\displaystyle Z=X+Y+{\frac {1}{2}}[X,Y]+{\frac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots ,}where the remaining terms are all iterated commutators involvingX andY. IfX andY commute, then all the commutators are zero and we have simplyZ =X +Y.

Inequalities for exponentials of Hermitian matrices

[edit]
Main article:Golden–Thompson inequality

ForHermitian matrices there is a notable theorem related to thetrace of matrix exponentials.

IfA andB are Hermitian matrices, then[6]trexp(A+B)tr[exp(A)exp(B)].{\displaystyle \operatorname {tr} \exp(A+B)\leq \operatorname {tr} \left[\exp(A)\exp(B)\right].}

There is no requirement of commutativity. There are counterexamples to show that the Golden–Thompson inequality cannot be extended to three matrices – and, in any event,tr(exp(A)exp(B)exp(C)) is not guaranteed to be real for HermitianA,B,C. However,Lieb proved[7][8] that it can be generalized to three matrices if we modify the expression as followstrexp(A+B+C)0dttr[eA(eB+t)1eC(eB+t)1].{\displaystyle \operatorname {tr} \exp(A+B+C)\leq \int _{0}^{\infty }\mathrm {d} t\,\operatorname {tr} \left[e^{A}\left(e^{-B}+t\right)^{-1}e^{C}\left(e^{-B}+t\right)^{-1}\right].}

The exponential map

[edit]

The exponential of a matrix is always aninvertible matrix. The inverse matrix ofeX is given byeX. This is analogous to the fact that the exponential of a complex number is always nonzero. The matrix exponential then gives us a mapexp:Mn(C)GL(n,C){\displaystyle \exp \colon M_{n}(\mathbb {C} )\to \mathrm {GL} (n,\mathbb {C} )}from the space of alln ×n matrices to thegeneral linear group of degreen, i.e. thegroup of alln ×n invertible matrices. In fact, this map issurjective which means that every invertible matrix can be written as the exponential of some other matrix[9] (for this, it is essential to consider the fieldC of complex numbers and notR).

For any two matricesX andY,eX+YeXYeXeY,{\displaystyle \left\|e^{X+Y}-e^{X}\right\|\leq \|Y\|e^{\|X\|}e^{\|Y\|},}

where‖ · ‖ denotes an arbitrarymatrix norm. It follows that the exponential map iscontinuous andLipschitz continuous oncompact subsets ofMn(C).

The maptetX,tR{\displaystyle t\mapsto e^{tX},\qquad t\in \mathbb {R} }defines asmooth curve in the general linear group which passes through the identity element att = 0.

In fact, this gives aone-parameter subgroup of the general linear group sinceetXesX=e(t+s)X.{\displaystyle e^{tX}e^{sX}=e^{(t+s)X}.}

The derivative of this curve (ortangent vector) at a pointt is given by

ddtetX=XetX=etXX.{\displaystyle {\frac {d}{dt}}e^{tX}=Xe^{tX}=e^{tX}X.}1

The derivative att = 0 is just the matrixX, which is to say thatX generates this one-parameter subgroup.

More generally,[10] for a generict-dependent exponent,X(t),

ddteX(t)=01eαX(t)dX(t)dte(1α)X(t)dα .{\displaystyle {\frac {d}{dt}}e^{X(t)}=\int _{0}^{1}e^{\alpha X(t)}{\frac {dX(t)}{dt}}e^{(1-\alpha )X(t)}\,d\alpha ~.}

Taking the above expressioneX(t) outside the integral sign and expanding the integrand with the help of theHadamard lemma one can obtain the following useful expression for the derivative of the matrix exponent,[11]eX(t)(ddteX(t))=ddtX(t)12![X(t),ddtX(t)]+13![X(t),[X(t),ddtX(t)]]{\displaystyle e^{-X(t)}\left({\frac {d}{dt}}e^{X(t)}\right)={\frac {d}{dt}}X(t)-{\frac {1}{2!}}\left[X(t),{\frac {d}{dt}}X(t)\right]+{\frac {1}{3!}}\left[X(t),\left[X(t),{\frac {d}{dt}}X(t)\right]\right]-\cdots }

The coefficients in the expression above are different from what appears in the exponential. For a closed form, seederivative of the exponential map.

Directional derivatives when restricted to Hermitian matrices

[edit]

LetX{\displaystyle X} be an×n{\displaystyle n\times n} Hermitian matrix with distinct eigenvalues. LetX=Ediag(Λ)E{\displaystyle X=E{\textrm {diag}}(\Lambda )E^{*}} be its eigen-decomposition whereE{\displaystyle E} is a unitary matrix whose columns are the eigenvectors ofX{\displaystyle X},E{\displaystyle E^{*}} is its conjugate transpose, andΛ=(λ1,,λn){\displaystyle \Lambda =\left(\lambda _{1},\ldots ,\lambda _{n}\right)} the vector of corresponding eigenvalues. Then, for anyn×n{\displaystyle n\times n} Hermitian matrixV{\displaystyle V}, thedirectional derivative ofexp:XeX{\displaystyle \exp :X\to e^{X}} atX{\displaystyle X} in the directionV{\displaystyle V} is[12][13]Dexp(X)[V]limϵ01ϵ(eX+ϵVeX)=E(GV¯)E{\displaystyle D\exp(X)[V]\triangleq \lim _{\epsilon \to 0}{\frac {1}{\epsilon }}\left(\displaystyle e^{X+\epsilon V}-e^{X}\right)=E(G\odot {\bar {V}})E^{*}}whereV¯=EVE{\displaystyle {\bar {V}}=E^{*}VE}, the operator{\displaystyle \odot } denotes the Hadamard product, and, for all1i,jn{\displaystyle 1\leq i,j\leq n}, the matrixG{\displaystyle G} is defined asGi,j={eλieλjλiλj if ij,eλi otherwise.{\displaystyle G_{i,j}=\left\{{\begin{aligned}&{\frac {e^{\lambda _{i}}-e^{\lambda _{j}}}{\lambda _{i}-\lambda _{j}}}&{\text{ if }}i\neq j,\\&e^{\lambda _{i}}&{\text{ otherwise}}.\\\end{aligned}}\right.}In addition, for anyn×n{\displaystyle n\times n} Hermitian matrixU{\displaystyle U}, the second directional derivative in directionsU{\displaystyle U} andV{\displaystyle V} is[13]D2exp(X)[U,V]limϵu0limϵv014ϵuϵv(eX+ϵuU+ϵvVeXϵuU+ϵvVeX+ϵuUϵvV+eXϵuUϵvV)=EF(U,V)E{\displaystyle D^{2}\exp(X)[U,V]\triangleq \lim _{\epsilon _{u}\to 0}\lim _{\epsilon _{v}\to 0}{\frac {1}{4\epsilon _{u}\epsilon _{v}}}\left(\displaystyle e^{X+\epsilon _{u}U+\epsilon _{v}V}-e^{X-\epsilon _{u}U+\epsilon _{v}V}-e^{X+\epsilon _{u}U-\epsilon _{v}V}+e^{X-\epsilon _{u}U-\epsilon _{v}V}\right)=EF(U,V)E^{*}}where the matrix-valued functionF{\displaystyle F} is defined, for all1i,jn{\displaystyle 1\leq i,j\leq n}, asF(U,V)i,j=k=1nϕi,j,k(U¯ikV¯jk+V¯ikU¯jk){\displaystyle F(U,V)_{i,j}=\sum _{k=1}^{n}\phi _{i,j,k}({\bar {U}}_{ik}{\bar {V}}_{jk}^{*}+{\bar {V}}_{ik}{\bar {U}}_{jk}^{*})}withϕi,j,k={GikGjkλiλj if ij,GiiGikλiλk if i=j and ki,Gii2 if i=j=k.{\displaystyle \phi _{i,j,k}=\left\{{\begin{aligned}&{\frac {G_{ik}-G_{jk}}{\lambda _{i}-\lambda _{j}}}&{\text{ if }}i\neq j,\\&{\frac {G_{ii}-G_{ik}}{\lambda _{i}-\lambda _{k}}}&{\text{ if }}i=j{\text{ and }}k\neq i,\\&{\frac {G_{ii}}{2}}&{\text{ if }}i=j=k.\\\end{aligned}}\right.}

Computing the matrix exponential

[edit]

Finding reliable and accurate methods to compute the matrix exponential is difficult, and this is still a topic of considerable current research in mathematics and numerical analysis.Matlab,GNU Octave,R, andSciPy all use thePadé approximant.[14][15][16][17] In this section, we discuss methods that are applicable in principle to any matrix, and which can be carried out explicitly for small matrices.[18] Subsequent sections describe methods suitable for numerical evaluation on large matrices.

Diagonalizable case

[edit]

If a matrix isdiagonal:A=[a1000a2000an],{\displaystyle A={\begin{bmatrix}a_{1}&0&\cdots &0\\0&a_{2}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &a_{n}\end{bmatrix}},}then its exponential can be obtained by exponentiating each entry on the main diagonal:eA=[ea1000ea2000ean].{\displaystyle e^{A}={\begin{bmatrix}e^{a_{1}}&0&\cdots &0\\0&e^{a_{2}}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &e^{a_{n}}\end{bmatrix}}.}

This result also allows one to exponentiatediagonalizable matrices. If

A =UDU−1

then

eA =UeDU−1,

which is especially easy to compute whenD is diagonal.

Application ofSylvester's formula yields the same result. (To see this, note that addition and multiplication, hence also exponentiation, of diagonal matrices is equivalent to element-wise addition and multiplication, and hence exponentiation; in particular, the "one-dimensional" exponentiation is felt element-wise for the diagonal case.)

Example : Diagonalizable

[edit]

For example, the matrixA=[1411]{\displaystyle A={\begin{bmatrix}1&4\\1&1\\\end{bmatrix}}}can be diagonalized as[2211][1003][2211]1.{\displaystyle {\begin{bmatrix}-2&2\\1&1\\\end{bmatrix}}{\begin{bmatrix}-1&0\\0&3\\\end{bmatrix}}{\begin{bmatrix}-2&2\\1&1\\\end{bmatrix}}^{-1}.}

Thus,eA=[2211]e[1003][2211]1=[2211][1e00e3][2211]1=[e4+12ee41ee414ee4+12e].{\displaystyle e^{A}={\begin{bmatrix}-2&2\\1&1\\\end{bmatrix}}e^{\begin{bmatrix}-1&0\\0&3\\\end{bmatrix}}{\begin{bmatrix}-2&2\\1&1\\\end{bmatrix}}^{-1}={\begin{bmatrix}-2&2\\1&1\\\end{bmatrix}}{\begin{bmatrix}{\frac {1}{e}}&0\\0&e^{3}\\\end{bmatrix}}{\begin{bmatrix}-2&2\\1&1\\\end{bmatrix}}^{-1}={\begin{bmatrix}{\frac {e^{4}+1}{2e}}&{\frac {e^{4}-1}{e}}\\{\frac {e^{4}-1}{4e}}&{\frac {e^{4}+1}{2e}}\\\end{bmatrix}}.}

Nilpotent case

[edit]

A matrixN isnilpotent ifNq = 0 for some integerq. In this case, the matrix exponentialeN can be computed directly from the series expansion, as the series terminates after a finite number of terms:

eN=I+N+12N2+16N3++1(q1)!Nq1 .{\displaystyle e^{N}=I+N+{\frac {1}{2}}N^{2}+{\frac {1}{6}}N^{3}+\cdots +{\frac {1}{(q-1)!}}N^{q-1}~.}

Since the series has a finite number of steps, it is a matrix polynomial, which can becomputed efficiently.

General case

[edit]

Using the Jordan–Chevalley decomposition

[edit]

By theJordan–Chevalley decomposition, anyn×n{\displaystyle n\times n} matrixX with complex entries can be expressed asX=A+N{\displaystyle X=A+N}where

  • A is diagonalizable
  • N is nilpotent
  • Acommutes withN

This means that we can compute the exponential ofX by reducing to the previous two cases:eX=eA+N=eAeN.{\displaystyle e^{X}=e^{A+N}=e^{A}e^{N}.}

Note that we need the commutativity ofA andN for the last step to work.

Using the Jordan canonical form

[edit]

A closely related method is, if the field isalgebraically closed, to work with theJordan form ofX. Suppose thatX =PJP−1 whereJ is the Jordan form ofX. TheneX=PeJP1.{\displaystyle e^{X}=Pe^{J}P^{-1}.}

Also, sinceJ=Ja1(λ1)Ja2(λ2)Jan(λn),eJ=exp(Ja1(λ1)Ja2(λ2)Jan(λn))=exp(Ja1(λ1))exp(Ja2(λ2))exp(Jan(λn)).{\displaystyle {\begin{aligned}J&=J_{a_{1}}(\lambda _{1})\oplus J_{a_{2}}(\lambda _{2})\oplus \cdots \oplus J_{a_{n}}(\lambda _{n}),\\e^{J}&=\exp {\big (}J_{a_{1}}(\lambda _{1})\oplus J_{a_{2}}(\lambda _{2})\oplus \cdots \oplus J_{a_{n}}(\lambda _{n}){\big )}\\&=\exp {\big (}J_{a_{1}}(\lambda _{1}){\big )}\oplus \exp {\big (}J_{a_{2}}(\lambda _{2}){\big )}\oplus \cdots \oplus \exp {\big (}J_{a_{n}}(\lambda _{n}){\big )}.\end{aligned}}}

Therefore, we need only know how to compute the matrix exponential of aJordan block. But each Jordan block is of the formJa(λ)=λI+NeJa(λ)=eλI+N=eλeN.{\displaystyle {\begin{aligned}&&J_{a}(\lambda )&=\lambda I+N\\&\Rightarrow &e^{J_{a}(\lambda )}&=e^{\lambda I+N}=e^{\lambda }e^{N}.\end{aligned}}}

whereN is a special nilpotent matrix. The matrix exponential ofJ is then given byeJ=eλ1eNa1eλ2eNa2eλneNan{\displaystyle e^{J}=e^{\lambda _{1}}e^{N_{a_{1}}}\oplus e^{\lambda _{2}}e^{N_{a_{2}}}\oplus \cdots \oplus e^{\lambda _{n}}e^{N_{a_{n}}}}

By Hermitian interpolaton

[edit]

Another standard method by theHermite interpolation with the use ofconfluent Vandermonde matrix is presented in details in section 1.2.2, pages 4-7 of the book Higham[19].

Projection case

[edit]

IfP is aprojection matrix (i.e. isidempotent:P2 =P), its matrix exponential is:

eP =I + (e − 1)P.

Deriving this by expansion of the exponential function, each power ofP reduces toP which becomes a common factor of the sum:eP=k=0Pkk!=I+(k=11k!)P=I+(e1)P .{\displaystyle e^{P}=\sum _{k=0}^{\infty }{\frac {P^{k}}{k!}}=I+\left(\sum _{k=1}^{\infty }{\frac {1}{k!}}\right)P=I+(e-1)P~.}

Rotation case

[edit]

For a simple rotation in which the perpendicular unit vectorsa andb specify a plane,[20] therotation matrixR can be expressed in terms of a similar exponential function involving ageneratorG and angleθ.[21][22]G=baTabTP=G2=aaT+bbTP2=PPG=G=GP ,{\displaystyle {\begin{aligned}G&=\mathbf {ba} ^{\mathsf {T}}-\mathbf {ab} ^{\mathsf {T}}&P&=-G^{2}=\mathbf {aa} ^{\mathsf {T}}+\mathbf {bb} ^{\mathsf {T}}\\P^{2}&=P&PG&=G=GP~,\end{aligned}}}R(θ)=eGθ=I+Gsin(θ)+G2(1cos(θ))=IP+Pcos(θ)+Gsin(θ) .{\displaystyle {\begin{aligned}R\left(\theta \right)=e^{G\theta }&=I+G\sin(\theta )+G^{2}(1-\cos(\theta ))\\&=I-P+P\cos(\theta )+G\sin(\theta )~.\\\end{aligned}}}

The formula for the exponential results from reducing the powers ofG in the series expansion and identifying the respective series coefficients ofG2 andG with−cos(θ) andsin(θ) respectively. The second expression here fore is the same as the expression forR(θ) in the article containing the derivation of thegenerator,R(θ) =e.

In two dimensions, ifa=[10]{\displaystyle a=\left[{\begin{smallmatrix}1\\0\end{smallmatrix}}\right]} andb=[01]{\displaystyle b=\left[{\begin{smallmatrix}0\\1\end{smallmatrix}}\right]}, thenG=[0110]{\displaystyle G=\left[{\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}}\right]},G2=[1001]{\displaystyle G^{2}=\left[{\begin{smallmatrix}-1&0\\0&-1\end{smallmatrix}}\right]}, andR(θ)=[cos(θ)sin(θ)sin(θ)cos(θ)]=Icos(θ)+Gsin(θ){\displaystyle R(\theta )={\begin{bmatrix}\cos(\theta )&-\sin(\theta )\\\sin(\theta )&\cos(\theta )\end{bmatrix}}=I\cos(\theta )+G\sin(\theta )}reduces to the standard matrix for a plane rotation.

The matrixP = −G2projects a vector onto theab-plane and the rotation only affects this part of the vector. An example illustrating this is a rotation of30° = π/6 in the plane spanned bya andb,

a=[100]b=15[012]{\displaystyle {\begin{aligned}\mathbf {a} &={\begin{bmatrix}1\\0\\0\\\end{bmatrix}}&\mathbf {b} &={\frac {1}{\sqrt {5}}}{\begin{bmatrix}0\\1\\2\\\end{bmatrix}}\end{aligned}}}G=15[012100200]P=G2=15[500012024]P[123]=15[5816]=a+85bR(π6)=110[5352558+34+23254+232+43]{\displaystyle {\begin{aligned}G={\frac {1}{\sqrt {5}}}&{\begin{bmatrix}0&-1&-2\\1&0&0\\2&0&0\\\end{bmatrix}}&P=-G^{2}&={\frac {1}{5}}{\begin{bmatrix}5&0&0\\0&1&2\\0&2&4\\\end{bmatrix}}\\P{\begin{bmatrix}1\\2\\3\\\end{bmatrix}}={\frac {1}{5}}&{\begin{bmatrix}5\\8\\16\\\end{bmatrix}}=\mathbf {a} +{\frac {8}{\sqrt {5}}}\mathbf {b} &R\left({\frac {\pi }{6}}\right)&={\frac {1}{10}}{\begin{bmatrix}5{\sqrt {3}}&-{\sqrt {5}}&-2{\sqrt {5}}\\{\sqrt {5}}&8+{\sqrt {3}}&-4+2{\sqrt {3}}\\2{\sqrt {5}}&-4+2{\sqrt {3}}&2+4{\sqrt {3}}\\\end{bmatrix}}\\\end{aligned}}}

LetN =I -P, soN2 =N and its products withP andG are zero. This will allow us to evaluate powers ofR.

R(π6)=N+P32+G12R(π6)2=N+P12+G32R(π6)3=N+GR(π6)6=NPR(π6)12=N+P=I{\displaystyle {\begin{aligned}R\left({\frac {\pi }{6}}\right)&=N+P{\frac {\sqrt {3}}{2}}+G{\frac {1}{2}}\\R\left({\frac {\pi }{6}}\right)^{2}&=N+P{\frac {1}{2}}+G{\frac {\sqrt {3}}{2}}\\R\left({\frac {\pi }{6}}\right)^{3}&=N+G\\R\left({\frac {\pi }{6}}\right)^{6}&=N-P\\R\left({\frac {\pi }{6}}\right)^{12}&=N+P=I\\\end{aligned}}}

Further information:Rodrigues' rotation formula andAxis–angle representation § Exponential map from so(3) to SO(3)

Evaluation by Laurent series

[edit]

By virtue of theCayley–Hamilton theorem the matrix exponential is expressible as a polynomial of ordern−1.

IfP andQt are nonzero polynomials in one variable, such thatP(A) = 0, and if themeromorphic functionf(z)=etzQt(z)P(z){\displaystyle f(z)={\frac {e^{tz}-Q_{t}(z)}{P(z)}}}isentire, thenetA=Qt(A).{\displaystyle e^{tA}=Q_{t}(A).}To prove this, multiply the first of the two above equalities byP(z) and replacez byA.

Such a polynomialQt(z) can be found as follows−seeSylvester's formula. Lettinga be a root ofP,Qa,t(z) is solved from the product ofP by theprincipal part of theLaurent series off ata: It is proportional to the relevantFrobenius covariant. Then the sumSt of theQa,t, wherea runs over all the roots ofP, can be taken as a particularQt. All the otherQt will be obtained by adding a multiple ofP toSt(z). In particular,St(z), theLagrange-Sylvester polynomial, is the onlyQt whose degree is less than that ofP.

Example: Consider the case of an arbitrary2 × 2 matrix,A:=[abcd].{\displaystyle A:={\begin{bmatrix}a&b\\c&d\end{bmatrix}}.}

The exponential matrixetA, by virtue of theCayley–Hamilton theorem, must be of the formetA=s0(t)I+s1(t)A.{\displaystyle e^{tA}=s_{0}(t)\,I+s_{1}(t)\,A.}

(For any complex numberz and anyC-algebraB, we denote again byz the product ofz by the unit ofB.)

Letα andβ be the roots of thecharacteristic polynomial ofA,P(z)=z2(a+d) z+adbc=(zα)(zβ) .{\displaystyle P(z)=z^{2}-(a+d)\ z+ad-bc=(z-\alpha )(z-\beta )~.}

Then we haveSt(z)=eαtzβαβ+eβtzαβα ,{\displaystyle S_{t}(z)=e^{\alpha t}{\frac {z-\beta }{\alpha -\beta }}+e^{\beta t}{\frac {z-\alpha }{\beta -\alpha }}~,}hences0(t)=αeβtβeαtαβ,s1(t)=eαteβtαβ{\displaystyle {\begin{aligned}s_{0}(t)&={\frac {\alpha \,e^{\beta t}-\beta \,e^{\alpha t}}{\alpha -\beta }},&s_{1}(t)&={\frac {e^{\alpha t}-e^{\beta t}}{\alpha -\beta }}\end{aligned}}}

ifαβ; while, ifα =β,St(z)=eαt(1+t(zα)) ,{\displaystyle S_{t}(z)=e^{\alpha t}(1+t(z-\alpha ))~,}

so thats0(t)=(1αt)eαt,s1(t)=teαt .{\displaystyle {\begin{aligned}s_{0}(t)&=(1-\alpha \,t)\,e^{\alpha t},&s_{1}(t)&=t\,e^{\alpha t}~.\end{aligned}}}

Definingsα+β2=trA2 ,qαβ2=±det(AsI),{\displaystyle {\begin{aligned}s&\equiv {\frac {\alpha +\beta }{2}}={\frac {\operatorname {tr} A}{2}}~,&q&\equiv {\frac {\alpha -\beta }{2}}=\pm {\sqrt {-\det \left(A-sI\right)}},\end{aligned}}}

we haves0(t)=est(cosh(qt)ssinh(qt)q),s1(t)=estsinh(qt)q,{\displaystyle {\begin{aligned}s_{0}(t)&=e^{st}\left(\cosh(qt)-s{\frac {\sinh(qt)}{q}}\right),&s_{1}(t)&=e^{st}{\frac {\sinh(qt)}{q}},\end{aligned}}}

wheresin(qt)/q is 0 ift = 0, andt ifq = 0.

Thus,

etA=est((cosh(qt)ssinh(qt)q) I +sinh(qt)qA) .{\displaystyle e^{tA}=e^{st}\left(\left(\cosh(qt)-s{\frac {\sinh(qt)}{q}}\right)~I~+{\frac {\sinh(qt)}{q}}A\right)~.}

Thus, as indicated above, the matrixA having decomposed into the sum of two mutually commuting pieces, the traceful piece and the traceless piece,A=sI+(AsI) ,{\displaystyle A=sI+(A-sI)~,}

the matrix exponential reduces to a plain product of the exponentials of the two respective pieces. This is a formula often used in physics, as it amounts to the analog ofEuler's formula forPauli spin matrices, that is rotations of the doublet representation of the groupSU(2).

The polynomialSt can also be given the following "interpolation" characterization. Defineet(z) ≡etz, andn ≡ degP. ThenSt(z) is the unique degree<n polynomial which satisfiesSt(k)(a) =et(k)(a) wheneverk is less than the multiplicity ofa as a root ofP. We assume, as we obviously can, thatP is theminimal polynomial ofA. We further assume thatA is adiagonalizable matrix. In particular, the roots ofP are simple, and the "interpolation" characterization indicates thatSt is given by theLagrange interpolation formula, so it is theLagrange−Sylvester polynomial.

At the other extreme, ifP = (z -a)n, thenSt=eat k=0n1 tkk! (za)k .{\displaystyle S_{t}=e^{at}\ \sum _{k=0}^{n-1}\ {\frac {t^{k}}{k!}}\ (z-a)^{k}~.}

The simplest case not covered by the above observations is whenP=(za)2(zb){\displaystyle P=(z-a)^{2}\,(z-b)} withab, which yieldsSt=eat zbab (1+(t+1ba)(za))+ebt (za)2(ba)2.{\displaystyle S_{t}=e^{at}\ {\frac {z-b}{a-b}}\ \left(1+\left(t+{\frac {1}{b-a}}\right)(z-a)\right)+e^{bt}\ {\frac {(z-a)^{2}}{(b-a)^{2}}}.}

Evaluation by implementation ofSylvester's formula

[edit]

A practical, expedited computation of the above reduces to the following rapid steps. Recall from above that ann ×n matrixexp(tA) amounts to a linear combination of the firstn−1 powers ofA by theCayley–Hamilton theorem. Fordiagonalizable matrices, as illustrated above, e.g. in the2 × 2 case,Sylvester's formula yieldsexp(tA) =Bα exp() +Bβ exp(), where theBs are theFrobenius covariants ofA.

It is easiest, however, to simply solve for theseBs directly, by evaluating this expression and its first derivative att = 0, in terms ofA andI, to find the same answer as above.

But this simple procedure also works fordefective matrices, in a generalization due to Buchheim.[23] This is illustrated here for a4 × 4 example of a matrix which isnot diagonalizable, and theBs are not projection matrices.

ConsiderA=[1100011000118001212] ,{\displaystyle A={\begin{bmatrix}1&1&0&0\\0&1&1&0\\0&0&1&-{\frac {1}{8}}\\0&0&{\frac {1}{2}}&{\frac {1}{2}}\end{bmatrix}}~,}with eigenvaluesλ1 = 3/4 andλ2 = 1, each with a multiplicity of two.

Consider the exponential of each eigenvalue multiplied byt,exp(λit). Multiply each exponentiated eigenvalue by the corresponding undetermined coefficient matrixBi. If the eigenvalues have an algebraic multiplicity greater than 1, then repeat the process, but now multiplying by an extra factor oft for each repetition, to ensure linear independence.

(If one eigenvalue had a multiplicity of three, then there would be the three terms:Bi1eλit, Bi2teλit, Bi3t2eλit{\displaystyle B_{i_{1}}e^{\lambda _{i}t},~B_{i_{2}}te^{\lambda _{i}t},~B_{i_{3}}t^{2}e^{\lambda _{i}t}}. By contrast, when all eigenvalues are distinct, theBs are just theFrobenius covariants, and solving for them as below just amounts to the inversion of theVandermonde matrix of these 4 eigenvalues.)

Sum all such terms, here four such,eAt=B11eλ1t+B12teλ1t+B21eλ2t+B22teλ2t,eAt=B11e34t+B12te34t+B21e1t+B22te1t .{\displaystyle {\begin{aligned}e^{At}&=B_{1_{1}}e^{\lambda _{1}t}+B_{1_{2}}te^{\lambda _{1}t}+B_{2_{1}}e^{\lambda _{2}t}+B_{2_{2}}te^{\lambda _{2}t},\\e^{At}&=B_{1_{1}}e^{{\frac {3}{4}}t}+B_{1_{2}}te^{{\frac {3}{4}}t}+B_{2_{1}}e^{1t}+B_{2_{2}}te^{1t}~.\end{aligned}}}

To solve for all of the unknown matricesB in terms of the first three powers ofA and the identity, one needs four equations, the above one providing one such att = 0. Further, differentiate it with respect tot,AeAt=34B11e34t+(34t+1)B12e34t+1B21e1t+(1t+1)B22e1t ,{\displaystyle Ae^{At}={\frac {3}{4}}B_{1_{1}}e^{{\frac {3}{4}}t}+\left({\frac {3}{4}}t+1\right)B_{1_{2}}e^{{\frac {3}{4}}t}+1B_{2_{1}}e^{1t}+\left(1t+1\right)B_{2_{2}}e^{1t}~,}

and again,A2eAt=(34)2B11e34t+((34)2t+(34+134))B12e34t+B21e1t+(12t+(1+11))B22e1t=(34)2B11e34t+((34)2t+32)B12e34t+B21et+(t+2)B22et ,{\displaystyle {\begin{aligned}A^{2}e^{At}&=\left({\frac {3}{4}}\right)^{2}B_{1_{1}}e^{{\frac {3}{4}}t}+\left(\left({\frac {3}{4}}\right)^{2}t+\left({\frac {3}{4}}+1\cdot {\frac {3}{4}}\right)\right)B_{1_{2}}e^{{\frac {3}{4}}t}+B_{2_{1}}e^{1t}+\left(1^{2}t+(1+1\cdot 1)\right)B_{2_{2}}e^{1t}\\&=\left({\frac {3}{4}}\right)^{2}B_{1_{1}}e^{{\frac {3}{4}}t}+\left(\left({\frac {3}{4}}\right)^{2}t+{\frac {3}{2}}\right)B_{1_{2}}e^{{\frac {3}{4}}t}+B_{2_{1}}e^{t}+\left(t+2\right)B_{2_{2}}e^{t}~,\end{aligned}}}

and once more,A3eAt=(34)3B11e34t+((34)3t+((34)2+(32)34))B12e34t+B21e1t+(13t+(1+2)1)B22e1t=(34)3B11e34t+((34)3t+2716)B12e34t+B21et+(t+31)B22et .{\displaystyle {\begin{aligned}A^{3}e^{At}&=\left({\frac {3}{4}}\right)^{3}B_{1_{1}}e^{{\frac {3}{4}}t}+\left(\left({\frac {3}{4}}\right)^{3}t+\left(\left({\frac {3}{4}}\right)^{2}+\left({\frac {3}{2}}\right)\cdot {\frac {3}{4}}\right)\right)B_{1_{2}}e^{{\frac {3}{4}}t}+B_{2_{1}}e^{1t}+\left(1^{3}t+(1+2)\cdot 1\right)B_{2_{2}}e^{1t}\\&=\left({\frac {3}{4}}\right)^{3}B_{1_{1}}e^{{\frac {3}{4}}t}\!+\left(\left({\frac {3}{4}}\right)^{3}t\!+{\frac {27}{16}}\right)B_{1_{2}}e^{{\frac {3}{4}}t}\!+B_{2_{1}}e^{t}\!+\left(t+3\cdot 1\right)B_{2_{2}}e^{t}~.\end{aligned}}}

(In the general case,n−1 derivatives need be taken.)

Settingt = 0 in these four equations, the four coefficient matricesBs may now be solved for,I=B11+B21A=34B11+B12+B21+B22A2=(34)2B11+32B12+B21+2B22A3=(34)3B11+2716B12+B21+3B22 ,{\displaystyle {\begin{aligned}I&=B_{1_{1}}+B_{2_{1}}\\A&={\frac {3}{4}}B_{1_{1}}+B_{1_{2}}+B_{2_{1}}+B_{2_{2}}\\A^{2}&=\left({\frac {3}{4}}\right)^{2}B_{1_{1}}+{\frac {3}{2}}B_{1_{2}}+B_{2_{1}}+2B_{2_{2}}\\A^{3}&=\left({\frac {3}{4}}\right)^{3}B_{1_{1}}+{\frac {27}{16}}B_{1_{2}}+B_{2_{1}}+3B_{2_{2}}~,\end{aligned}}}

to yieldB11=128A3366A2+288A80IB12=16A344A2+40A12IB21=128A3+366A2288A+80IB22=16A340A2+33A9I .{\displaystyle {\begin{aligned}B_{1_{1}}&=128A^{3}-366A^{2}+288A-80I\\B_{1_{2}}&=16A^{3}-44A^{2}+40A-12I\\B_{2_{1}}&=-128A^{3}+366A^{2}-288A+80I\\B_{2_{2}}&=16A^{3}-40A^{2}+33A-9I~.\end{aligned}}}

Substituting with the value forA yields the coefficient matricesB11=[004816008200100001]B12=[004200112001418001214]B21=[104816018200000000]B22=[0182000000000000]{\displaystyle {\begin{aligned}B_{1_{1}}&={\begin{bmatrix}0&0&48&-16\\0&0&-8&2\\0&0&1&0\\0&0&0&1\end{bmatrix}}\\B_{1_{2}}&={\begin{bmatrix}0&0&4&-2\\0&0&-1&{\frac {1}{2}}\\0&0&{\frac {1}{4}}&-{\frac {1}{8}}\\0&0&{\frac {1}{2}}&-{\frac {1}{4}}\end{bmatrix}}\\B_{2_{1}}&={\begin{bmatrix}1&0&-48&16\\0&1&8&-2\\0&0&0&0\\0&0&0&0\end{bmatrix}}\\B_{2_{2}}&={\begin{bmatrix}0&1&8&-2\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}}\end{aligned}}}

so the final answer isetA=[ettet(8t48)et+(4t+48)e34t(162t)et+(2t16)e34t0et8et+(t8)e34t2et+t+42e34t00t+44e34tt8e34t00t2e34tt44e34t .]{\displaystyle e^{tA}={\begin{bmatrix}e^{t}&te^{t}&\left(8t-48\right)e^{t}\!+\left(4t+48\right)e^{{\frac {3}{4}}t}&\left(16-2\,t\right)e^{t}\!+\left(-2t-16\right)e^{{\frac {3}{4}}t}\\0&e^{t}&8e^{t}\!+\left(-t-8\right)e^{{\frac {3}{4}}t}&-2e^{t}+{\frac {t+4}{2}}e^{{\frac {3}{4}}t}\\0&0&{\frac {t+4}{4}}e^{{\frac {3}{4}}t}&-{\frac {t}{8}}e^{{\frac {3}{4}}t}\\0&0&{\frac {t}{2}}e^{{\frac {3}{4}}t}&-{\frac {t-4}{4}}e^{{\frac {3}{4}}t}~.\end{bmatrix}}}

The procedure is much shorter thanPutzer's algorithm sometimes utilized in such cases.

See also:Derivative of the exponential map

Illustrations

[edit]

Suppose that we want to compute the exponential ofB=[211765164416].{\displaystyle B={\begin{bmatrix}21&17&6\\-5&-1&-6\\4&4&16\end{bmatrix}}.}

ItsJordan form isJ=P1BP=[40001610016],{\displaystyle J=P^{-1}BP={\begin{bmatrix}4&0&0\\0&16&1\\0&0&16\end{bmatrix}},}where the matrixP is given byP=[1425414214040].{\displaystyle P={\begin{bmatrix}-{\frac {1}{4}}&2&{\frac {5}{4}}\\{\frac {1}{4}}&-2&-{\frac {1}{4}}\\0&4&0\end{bmatrix}}.}

Let us first calculate exp(J). We haveJ=J1(4)J2(16){\displaystyle J=J_{1}(4)\oplus J_{2}(16)}

The exponential of a1 × 1 matrix is just the exponential of the one entry of the matrix, soexp(J1(4)) = [e4]. The exponential ofJ2(16) can be calculated by the formulaeI +N) =eλeN mentioned above; this yields[24]

exp([161016])=e16exp([0100])==e16([1001]+[0100]+12![0000]+)=[e16e160e16].{\displaystyle {\begin{aligned}&\exp \left({\begin{bmatrix}16&1\\0&16\end{bmatrix}}\right)=e^{16}\exp \left({\begin{bmatrix}0&1\\0&0\end{bmatrix}}\right)=\\[6pt]{}={}&e^{16}\left({\begin{bmatrix}1&0\\0&1\end{bmatrix}}+{\begin{bmatrix}0&1\\0&0\end{bmatrix}}+{1 \over 2!}{\begin{bmatrix}0&0\\0&0\end{bmatrix}}+\cdots {}\right)={\begin{bmatrix}e^{16}&e^{16}\\0&e^{16}\end{bmatrix}}.\end{aligned}}}

Therefore, the exponential of the original matrixB isexp(B)=Pexp(J)P1=P[e4000e16e1600e16]P1=14[13e16e413e165e42e162e49e16+e49e16+5e42e16+2e416e1616e164e16].{\displaystyle {\begin{aligned}\exp(B)&=P\exp(J)P^{-1}=P{\begin{bmatrix}e^{4}&0&0\\0&e^{16}&e^{16}\\0&0&e^{16}\end{bmatrix}}P^{-1}\\[6pt]&={1 \over 4}{\begin{bmatrix}13e^{16}-e^{4}&13e^{16}-5e^{4}&2e^{16}-2e^{4}\\-9e^{16}+e^{4}&-9e^{16}+5e^{4}&-2e^{16}+2e^{4}\\16e^{16}&16e^{16}&4e^{16}\end{bmatrix}}.\end{aligned}}}

Applications

[edit]

Linear differential equations

[edit]

The matrix exponential has applications to systems oflinear differential equations. (See alsomatrix differential equation.) Recall from earlier in this article that ahomogeneous differential equation of the formy=Ay{\displaystyle \mathbf {y} '=A\mathbf {y} }has solutioneAty(0).

If we consider the vectory(t)=[y1(t)yn(t)] ,{\displaystyle \mathbf {y} (t)={\begin{bmatrix}y_{1}(t)\\\vdots \\y_{n}(t)\end{bmatrix}}~,}we can express a system ofinhomogeneous coupled linear differential equations asy(t)=Ay(t)+b(t).{\displaystyle \mathbf {y} '(t)=A\mathbf {y} (t)+\mathbf {b} (t).}Making anansatz to use an integrating factor ofeAt and multiplying throughout, yieldseAtyeAtAy=eAtbeAtyAeAty=eAtbddt(eAty)=eAtb .{\displaystyle {\begin{aligned}&&e^{-At}\mathbf {y} '-e^{-At}A\mathbf {y} &=e^{-At}\mathbf {b} \\&\Rightarrow &e^{-At}\mathbf {y} '-Ae^{-At}\mathbf {y} &=e^{-At}\mathbf {b} \\&\Rightarrow &{\frac {d}{dt}}\left(e^{-At}\mathbf {y} \right)&=e^{-At}\mathbf {b} ~.\end{aligned}}}

The second step is possible due to the fact that, ifAB =BA, theneAtB =BeAt. So, calculatingeAt leads to the solution to the system, by simply integrating the third step with respect tot.

A solution to this can be obtained by integrating and multiplying byeAt{\displaystyle e^{{\textbf {A}}t}} to eliminate the exponent in the LHS. Notice that whileeAt{\displaystyle e^{{\textbf {A}}t}} is a matrix, given that it is a matrix exponential, we can say thateAteAt=I{\displaystyle e^{{\textbf {A}}t}e^{-{\textbf {A}}t}=I}. In other words,expAt=exp(At)1{\displaystyle \exp {{\textbf {A}}t}=\exp {{(-{\textbf {A}}t)}^{-1}}}.

Example (homogeneous)

[edit]

Consider the systemx=2xy+zy=3y1zz=2x+y+3z .{\displaystyle {\begin{matrix}x'&=&2x&-y&+z\\y'&=&&3y&-1z\\z'&=&2x&+y&+3z\end{matrix}}~.}

The associateddefective matrix isA=[211031213] .{\displaystyle A={\begin{bmatrix}2&-1&1\\0&3&-1\\2&1&3\end{bmatrix}}~.}

The matrix exponential isetA=12[e2t(1+e2t2t)2te2te2t(1+e2t)e2t(1+e2t2t)2(t+1)e2te2t(1+e2t)e2t(1+e2t+2t)2te2te2t(1+e2t)] ,{\displaystyle e^{tA}={\frac {1}{2}}{\begin{bmatrix}e^{2t}\left(1+e^{2t}-2t\right)&-2te^{2t}&e^{2t}\left(-1+e^{2t}\right)\\-e^{2t}\left(-1+e^{2t}-2t\right)&2(t+1)e^{2t}&-e^{2t}\left(-1+e^{2t}\right)\\e^{2t}\left(-1+e^{2t}+2t\right)&2te^{2t}&e^{2t}\left(1+e^{2t}\right)\end{bmatrix}}~,}

so that the general solution of the homogeneous system is[xyz]=x(0)2[e2t(1+e2t2t)e2t(1+e2t2t)e2t(1+e2t+2t)]+y(0)2[2te2t2(t+1)e2t2te2t]+z(0)2[e2t(1+e2t)e2t(1+e2t)e2t(1+e2t)] ,{\displaystyle {\begin{bmatrix}x\\y\\z\end{bmatrix}}={\frac {x(0)}{2}}{\begin{bmatrix}e^{2t}\left(1+e^{2t}-2t\right)\\-e^{2t}\left(-1+e^{2t}-2t\right)\\e^{2t}\left(-1+e^{2t}+2t\right)\end{bmatrix}}+{\frac {y(0)}{2}}{\begin{bmatrix}-2te^{2t}\\2(t+1)e^{2t}\\2te^{2t}\end{bmatrix}}+{\frac {z(0)}{2}}{\begin{bmatrix}e^{2t}\left(-1+e^{2t}\right)\\-e^{2t}\left(-1+e^{2t}\right)\\e^{2t}\left(1+e^{2t}\right)\end{bmatrix}}~,}

amounting to2x=x(0)e2t(1+e2t2t)+y(0)(2te2t)+z(0)e2t(1+e2t)2y=x(0)(e2t)(1+e2t2t)+y(0)2(t+1)e2t+z(0)(e2t)(1+e2t)2z=x(0)e2t(1+e2t+2t)+y(0)2te2t+z(0)e2t(1+e2t) .{\displaystyle {\begin{aligned}2x&=x(0)e^{2t}\left(1+e^{2t}-2t\right)+y(0)\left(-2te^{2t}\right)+z(0)e^{2t}\left(-1+e^{2t}\right)\\[2pt]2y&=x(0)\left(-e^{2t}\right)\left(-1+e^{2t}-2t\right)+y(0)2(t+1)e^{2t}+z(0)\left(-e^{2t}\right)\left(-1+e^{2t}\right)\\[2pt]2z&=x(0)e^{2t}\left(-1+e^{2t}+2t\right)+y(0)2te^{2t}+z(0)e^{2t}\left(1+e^{2t}\right)~.\end{aligned}}}

Example (inhomogeneous)

[edit]

Consider now the inhomogeneous systemx=2xy+z+e2ty=3yzz=2x+y+3z+e2t .{\displaystyle {\begin{matrix}x'&=&2x&-&y&+&z&+&e^{2t}\\y'&=&&&3y&-&z&\\z'&=&2x&+&y&+&3z&+&e^{2t}\end{matrix}}~.}

We again haveA=[211031213] ,{\displaystyle A=\left[{\begin{array}{rrr}2&-1&1\\0&3&-1\\2&1&3\end{array}}\right]~,}

andb=e2t[101].{\displaystyle \mathbf {b} =e^{2t}{\begin{bmatrix}1\\0\\1\end{bmatrix}}.}

From before, we already have the general solution to the homogeneous equation. Since the sum of the homogeneous and particular solutions give the general solution to the inhomogeneous problem, we now only need find the particular solution.

We have, by above,yp=etA0te(u)A[e2u0e2u]du+etAc=etA0t[2eu2ue2u2ue2u02eu+2(u+1)e2u2(u+1)e2u02ue2u2ue2u2eu][e2u0e2u]du+etAc=etA0t[e2u(2eu2ue2u)e2u(2eu+2(1+u)e2u)2e3u+2ue4u]du+etAc=etA[124e3t(3et(4t1)16)124e3t(3et(4t+4)16)124e3t(3et(4t1)16)]+[2et2te2t2te2t02et+2(t+1)e2t2(t+1)e2t02te2t2te2t2et][c1c2c3] ,{\displaystyle {\begin{aligned}\mathbf {y} _{p}&=e^{tA}\int _{0}^{t}e^{(-u)A}{\begin{bmatrix}e^{2u}\\0\\e^{2u}\end{bmatrix}}\,du+e^{tA}\mathbf {c} \\[6pt]&=e^{tA}\int _{0}^{t}{\begin{bmatrix}2e^{u}-2ue^{2u}&-2ue^{2u}&0\\-2e^{u}+2(u+1)e^{2u}&2(u+1)e^{2u}&0\\2ue^{2u}&2ue^{2u}&2e^{u}\end{bmatrix}}{\begin{bmatrix}e^{2u}\\0\\e^{2u}\end{bmatrix}}\,du+e^{tA}\mathbf {c} \\[6pt]&=e^{tA}\int _{0}^{t}{\begin{bmatrix}e^{2u}\left(2e^{u}-2ue^{2u}\right)\\e^{2u}\left(-2e^{u}+2(1+u)e^{2u}\right)\\2e^{3u}+2ue^{4u}\end{bmatrix}}\,du+e^{tA}\mathbf {c} \\[6pt]&=e^{tA}{\begin{bmatrix}-{1 \over 24}e^{3t}\left(3e^{t}(4t-1)-16\right)\\{1 \over 24}e^{3t}\left(3e^{t}(4t+4)-16\right)\\{1 \over 24}e^{3t}\left(3e^{t}(4t-1)-16\right)\end{bmatrix}}+{\begin{bmatrix}2e^{t}-2te^{2t}&-2te^{2t}&0\\-2e^{t}+2(t+1)e^{2t}&2(t+1)e^{2t}&0\\2te^{2t}&2te^{2t}&2e^{t}\end{bmatrix}}{\begin{bmatrix}c_{1}\\c_{2}\\c_{3}\end{bmatrix}}~,\end{aligned}}}which could be further simplified to get the requisite particular solution determined through variation of parameters.Notec =yp(0). For more rigor, see the following generalization.

Inhomogeneous case generalization: variation of parameters

[edit]

For the inhomogeneous case, we can useintegrating factors (a method akin tovariation of parameters). We seek a particular solution of the formyp(t) = exp(tA)z(t),yp(t)=(etA)z(t)+etAz(t)=AetAz(t)+etAz(t)=Ayp(t)+etAz(t) .{\displaystyle {\begin{aligned}\mathbf {y} _{p}'(t)&=\left(e^{tA}\right)'\mathbf {z} (t)+e^{tA}\mathbf {z} '(t)\\[6pt]&=Ae^{tA}\mathbf {z} (t)+e^{tA}\mathbf {z} '(t)\\[6pt]&=A\mathbf {y} _{p}(t)+e^{tA}\mathbf {z} '(t)~.\end{aligned}}}

Foryp to be a solution,etAz(t)=b(t)z(t)=(etA)1b(t)z(t)=0teuAb(u)du+c .{\displaystyle {\begin{aligned}e^{tA}\mathbf {z} '(t)&=\mathbf {b} (t)\\[6pt]\mathbf {z} '(t)&=\left(e^{tA}\right)^{-1}\mathbf {b} (t)\\[6pt]\mathbf {z} (t)&=\int _{0}^{t}e^{-uA}\mathbf {b} (u)\,du+\mathbf {c} ~.\end{aligned}}}

Thus,yp(t)=etA0teuAb(u)du+etAc=0te(tu)Ab(u)du+etAc ,{\displaystyle {\begin{aligned}\mathbf {y} _{p}(t)&=e^{tA}\int _{0}^{t}e^{-uA}\mathbf {b} (u)\,du+e^{tA}\mathbf {c} \\&=\int _{0}^{t}e^{(t-u)A}\mathbf {b} (u)\,du+e^{tA}\mathbf {c} ~,\end{aligned}}}wherec is determined by the initial conditions of the problem.

More precisely, consider the equationYA Y=F(t){\displaystyle Y'-A\ Y=F(t)}

with the initial conditionY(t0) =Y0, where

Left-multiplying the above displayed equality bye−tA yieldsY(t)=e(tt0)A Y0+t0te(tx)A F(x) dx .{\displaystyle Y(t)=e^{(t-t_{0})A}\ Y_{0}+\int _{t_{0}}^{t}e^{(t-x)A}\ F(x)\ dx~.}

We claim that the solution to the equationP(d/dt) y=f(t){\displaystyle P(d/dt)\ y=f(t)}

with the initial conditionsy(k)(t0)=yk{\displaystyle y^{(k)}(t_{0})=y_{k}} for0 ≤k <n isy(t)=k=0n1 yk sk(tt0)+t0tsn1(tx) f(x) dx ,{\displaystyle y(t)=\sum _{k=0}^{n-1}\ y_{k}\ s_{k}(t-t_{0})+\int _{t_{0}}^{t}s_{n-1}(t-x)\ f(x)\ dx~,}

where the notation is as follows:

sk(t) is the coefficient ofXk{\displaystyle X^{k}} in the polynomial denoted byStC[X]{\displaystyle S_{t}\in \mathbb {C} [X]} in SubsectionEvaluation by Laurent series above.

To justify this claim, we transform our ordern scalar equation into an order one vector equation by the usualreduction to a first order system. Our vector equation takes the formdYdtA Y=F(t),Y(t0)=Y0,{\displaystyle {\frac {dY}{dt}}-A\ Y=F(t),\quad Y(t_{0})=Y_{0},}whereA is thetransposecompanion matrix ofP. We solve this equation as explained above, computing the matrix exponentials by the observation made in SubsectionEvaluation by implementation of Sylvester's formula above.

In the casen = 2 we get the following statement. The solution toy(α+β) y+αβ y=f(t),y(t0)=y0,y(t0)=y1{\displaystyle y''-(\alpha +\beta )\ y'+\alpha \,\beta \ y=f(t),\quad y(t_{0})=y_{0},\quad y'(t_{0})=y_{1}}

isy(t)=y0 s0(tt0)+y1 s1(tt0)+t0ts1(tx)f(x) dx,{\displaystyle y(t)=y_{0}\ s_{0}(t-t_{0})+y_{1}\ s_{1}(t-t_{0})+\int _{t_{0}}^{t}s_{1}(t-x)\,f(x)\ dx,}

where the functionss0 ands1 are as in SubsectionEvaluation by Laurent series above.

See also

[edit]

References

[edit]
  1. ^Hall 2015 Equation 2.1
  2. ^Hall 2015 Proposition 2.3
  3. ^Hall 2015 Theorem 2.12
  4. ^Hall 2015 Theorem 2.11
  5. ^Hall 2015 Chapter 5
  6. ^Bhatia, R. (1997).Matrix Analysis. Graduate Texts in Mathematics. Vol. 169. Springer.ISBN 978-0-387-94846-1.
  7. ^Lieb, Elliott H. (1973)."Convex trace functions and the Wigner–Yanase–Dyson conjecture".Advances in Mathematics.11 (3):267–288.doi:10.1016/0001-8708(73)90011-X.
  8. ^H. Epstein (1973)."Remarks on two theorems of E. Lieb".Communications in Mathematical Physics.31 (4):317–325.Bibcode:1973CMaPh..31..317E.doi:10.1007/BF01646492.S2CID 120096681.
  9. ^Hall 2015 Exercises 2.9 and 2.10
  10. ^R. M. Wilcox (1967). "Exponential Operators and Parameter Differentiation in Quantum Physics".Journal of Mathematical Physics.8 (4):962–982.Bibcode:1967JMP.....8..962W.doi:10.1063/1.1705306.
  11. ^Hall 2015 Theorem 5.4
  12. ^Lewis, Adrian S.; Sendov, Hristo S. (2001)."Twice differentiable spectral functions"(PDF).SIAM Journal on Matrix Analysis and Applications.23 (2):368–386.doi:10.1137/S089547980036838X. See Theorem 3.3.
  13. ^abDeledalle, Charles-Alban; Denis, Loïc; Tupin, Florence (2022)."Speckle reduction in matrix-log domain for synthetic aperture radar imaging".Journal of Mathematical Imaging and Vision.64 (3):298–320.Bibcode:2022JMIV...64..298D.doi:10.1007/s10851-022-01067-1. See Propositions 1 and 2.
  14. ^"Matrix exponential – MATLAB expm – MathWorks Deutschland". Mathworks.de. 2011-04-30. Archived fromthe original on 2012-07-30. Retrieved2013-06-05.
  15. ^"GNU Octave – Functions of a Matrix". Network-theory.co.uk. 2007-01-11. Archived fromthe original on 2015-05-29. Retrieved2013-06-05.
  16. ^"R - pkg {Matrix}: Matrix Exponential". 2005-02-28. Retrieved2023-07-17.
  17. ^"scipy.linalg.expm function documentation". The SciPy Community. 2015-01-18. Retrieved2015-05-29.
  18. ^SeeHall 2015 Section 2.2
  19. ^Higham, N.J (2008).Functions of Matrices: Theory and Computation. SIAM.doi:10.1137/1.9780898717778.ISBN 978-0-898716-46-7.
  20. ^in a Euclidean space
  21. ^Weyl, Hermann (1952).Space Time Matter. Dover. p. 142.ISBN 978-0-486-60267-7.{{cite book}}:ISBN / Date incompatibility (help)
  22. ^Bjorken, James D.; Drell, Sidney D. (1964).Relativistic Quantum Mechanics. McGraw-Hill. p. 22.
  23. ^Rinehart, R. F. (1955). "The equivalence of definitions of a matric function".The American Mathematical Monthly,62 (6), 395-414.
  24. ^This can be generalized; in general, the exponential ofJn(a) is an upper triangular matrix withea/0! on the main diagonal,ea/1! on the one above,ea/2! on the next one, and so on.

External links

[edit]
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Matrix_exponential&oldid=1335199483"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp