This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "List of interface bit rates" – news ·newspapers ·books ·scholar ·JSTOR(March 2011) (Learn how and when to remove this message) |
This is alist of interface bit rates, a measure ofinformation transfer rates, ordigital bandwidth capacity, at which digital interfaces in acomputer ornetwork can communicate over various kinds ofbuses andchannels. The distinction can be arbitrary between acomputer bus, often closer in space, and largertelecommunications networks. Many deviceinterfaces orprotocols (e.g., SATA, USB,SAS,PCIe) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as ahard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.
Factors limiting actual performance, criteria for real decisions
editMost of the listed rates are theoretical maximumthroughput measures; in practice, theactual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), physical or temporal distances, and otheroverhead indata link layer protocols etc. The maximumgoodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by linenoise orinterference such ascrosstalk, or lost packets incongested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long-term rates.
Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance,SATA revision 3.0 (6 Gbit/s) controllers on one PCI Express 2.0 (5 Gbit/s) channel will be limited to the5 Gbit/s rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA revision 2.0 (3 Gbit/s), so moving from this3 Gbit/s interface toUSB 3.0 at4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.
Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices,BPL, andmodems may produce a higherline rate orgross bit rate, due toerror-correcting codes and otherphysical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.
Another factor reducing throughput is deliberate policy decisions made byInternet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples arerate limiting,bandwidth throttling, and the assignment ofIP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.
Furthermore, chips are often not available in order to implement the fastest rates.AMD, for instance, does not support the 32-bitHyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally,WiMAX service providers in the US typically support only up to4 Mbit/s as of the end of 2009.
Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.
Conventions
editBy convention, bus and network data rates are denoted either inbits per second –bit/s,kbit/s (103 bit/s),Mbit/s (106 bit/s),Gbit/s (109 bit/s),Tbit/s (1012 bit/s) – orbytes per second –B/s,kB/s (103 B/s),MB/s (106 B/s),GB/s (109 B/s),TB/s (1012 B/s). In general,parallel interfaces are quoted inB/s andserial inbit/s. The more commonly used is shown below inbold type.
On devices likemodems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels useline codes (such asEthernet,Serial ATA, andPCI Express), quoted rates are for the decoded signal.
The figures below aresimplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is thedownstream rate and the second value is the upstream rate.
The use ofdecimal prefixes is standard in data communications.
Bandwidths
editThe figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.
As stated above, all quoted bandwidths are for each direction. Therefore, forduplex interfaces (capable of simultaneous transmission both ways), the stated values aresimplex (one way) speeds, rather than total upstream+downstream.
Historical
editTechnology | Max. rate | Rateex. overhead | Year |
---|---|---|---|
Smoke signals | millibits/s[1] | throughout history | |
Morse code (skilled operator) | 21 bits/s[a] | 4 characters per second (cps) (~40 wpm)[b] | 1844 |
Normal human speech | 39 bits/s[2] | prehistoric |
Radio clock
editTime signal station toradio clock
Technology | Max. rate | Year | |
---|---|---|---|
IRIG and related | 1 bit/s | ~0.125characters/s[3][4] | 1960[citation needed] |
Teletypewriter (TTY) ortelecommunications device for the deaf (TDD)
editTechnology | Max. rate | Year | |
---|---|---|---|
TTY (V.18) | 45.4545 bit/s | 6characters/s[5] | 1994[6] |
TTY (V.18) | 50 bit/s | 6.6characters/s | 1994 |
NTSCLine 21 Closed Captioning | 1 kbit/s | ~100characters/s | 1976[7] |
Modems (narrowband and broadband)
editNarrowband (POTS: 4 kHz channel)
editTechnology | Rate | Rateex. overhead | Year |
---|---|---|---|
Teleprinter (50 baud) | 0.05 kbit/s | 404 operations per minute | 1940x |
Modem 110baud (Bell 101) | 0.11 kbit/s | 0.010 kB/s (~10 cps)[c] | 1959 |
Modem 300 (300 baud;Bell 103 orV.21) | 0.3 kbit/s | 0.03 kB/s (~30 cps)[c] | 1962[8] |
Modem 1200/75 (600 baud;V.23) | 1.2/0.075 kbit/s | 0.12/0.0075 kB/s (~120 cps)[c] | 1964(?)[9] |
Modem 1200 (600 baud; Vadic VA3400,Bell 212A, orV.22) | 1.2 kbit/s | 0.12 kB/s (~120 cps)[c] | 1976 |
Modem 1200 (Bell 202C, 202D) | 1.2 kbit/s | 0.15 kB/s (~150 cps) | 1976 |
Modem 2000 (Bell 201A) | 2 kbit/s | 0.25 kB/s (~250 cps) | 1962 |
Modem 2400 (Bell 201B) | 2.4 kbit/s | 0.3 kB/s (~300 cps) | ? |
Modem 2400 (600 baud;V.22bis) | 2.4 kbit/s | 0.3 kB/s[c] | 1984[9] |
Modem 4800/75 (1600 baud;V.27ter) | 4.8/0.075 kbit/s | 0.6/0.0075 kB/s[c] | 1976[9] |
Modem 4800 (1600 baud, Bell 208A, 208B) | 4.8 kbit/s | 0.6 kB/s | ? |
Modem 9600 (2400 baud;V.32) | 9.6 kbit/s | 1.2 kB/s[c] | 1984[9] |
Modem 14.4 (2400 baud;V.32bis) | 14.4 kbit/s | 1.8 kB/s[c] | 1991[8] |
Modem 28.8 (3200 baud;V.34-1994) | 28.8 kbit/s | 3.6 kB/s[c] | 1994 |
Modem 33.6 (3429 baud;V.34-1996/98) | 33.6 kbit/s | 4.2 kB/s[c] | 1996[9] |
Modem 56k (8000/3429 baud;V.90) | 56.0/33.6 kbit/s[d] | 7/4.2 kB/s | 1998 |
Modem 56k (8000/8000 baud;V.92) | 56.0/48.0 kbit/s[d] | 7/6 kB/s | 2001 |
Modem data compression (variable;V.92/V.44) | 56.0–320.0 kbit/s[d] | 7–40 kB/s | 2000[9] |
ISP-side text/image compression (variable) | 56.0–1000.0 kbit/s | 7–125 kB/s | 1998[9] |
ISDNBasic Rate Interface (single/dual channel) | 64/128 kbit/s[e] | 8/16 kB/s | 1986[10] |
IDSL (dual ISDN +16 kbit/s data channels) | 144 kbit/s | 18 kB/s | 2000[11] |
Technology | Rate | Rateex. overhead | Year |
---|---|---|---|
ADSL (G.lite) | 1536/512 kbit/s | 192/64 kB/s | 1998 |
HDSL ITUG.991.1 a.k.a.DS1 | 1544 kbit/s | 193 kB/s | 1998[12] |
MSDSL | 2000 kbit/s | 250 kB/s | ? |
SDSL | 2320 kbit/s | 290 kB/s | ? |
SHDSL ITUG.991.2 | 5690 kbit/s | 711 kB/s | 2001 |
ADSL (G.dmt) ITUG.992.1 | 8192/1024 kbit/s | 1024/128 kB/s | 1999 |
ADSL2 ITUG.992.3/4 | 12288/1440 kbit/s | 1536/180 kB/s | 2002 |
ADSL2+ ITUG.992.5 | 24576/3584 kbit/s | 3072/448 kB/s | 2003 |
DOCSIS 1.0[13] (cable modem) | 38/9 Mbit/s | 4.75/1.125 MB/s | 1997 |
DOCSIS 2.0[14] (cable modem) | 38/27 Mbit/s | 4.75/3.375 MB/s | 2002 |
VDSL ITUG.993.1 | 52 Mbit/s | 7 MB/s | 2001 |
VDSL2 ITUG.993.2 | 100 Mbit/s | 12.5 MB/s | 2006 |
Uni-DSL | 200 Mbit/s | 25 MB/s | 2006 |
VDSL2 ITUG.993.2 Amendment 1 (11/15) | 300 Mbit/s | 37.5 MB/s | 2015 |
BPON (G.983) (fiber optic service) | 622/155 Mbit/s | 77.7/19.3 MB/s | 2005[15] |
EPON (802.3ah) (fiber optic service) | 1000/1000 Mbit/s | 125/125 MB/s | 2008 |
DOCSIS 3.0[16] (cable modem) | 1216/216 Mbit/s | 152/27 MB/s | 2006 |
G.fast ITUG.9701 | 2000 Mbit/s | 250 MB/s | 2019 |
GPON (G.984) (fiber optic service) | 2488/1244 Mbit/s | 311/155.5 MB/s | 2008[17] |
DOCSIS 3.1[18] (cable modem) | 10/2 Gbit/s | 1.25/0.25 GB/s | 2013 |
10G-PON (G.987) (fiber optic service) | 10/2.5 Gbit/s | 1.25/0.3125 GB/s | 2012[19] |
DOCSIS 4.0 (cable modem) | 10/6 Gbit/s | 1.25/0.75 GB/s | 2017 |
XGS-PON (G.9807.1) (fiber optic service) | 10/10 Gbit/s | 1.25/1.25 GB/s | 2016 |
NG-PON2 (G.989) (fiber optic service) | 40/10 Gbit/s | 5/1.25 GB/s | 2015[20] |
Mobile telephone interfaces
editTechnology | Download rate | Upload rate | Year | ||
---|---|---|---|---|---|
GSMCSD (2G) | 14.4 kbit/s[f] | 1.8 kB/s | 14.4 kbit/s | 1.8 kB/s | |
HSCSD | 57.6 kbit/s | 7.2 kB/s | 14.4 kbit/s | 1.8 kB/s | |
GPRS (2.5G) | 57.6 kbit/s | 7.2 kB/s | 28.8 kbit/s | 3.6 kB/s | |
WiDEN | 100 kbit/s | 12.5 kB/s | 100 kbit/s | 12.5 kB/s | |
CDMA2000 1×RTT | 153 kbit/s | 18 kB/s | 153 kbit/s | 18 kB/s | |
EDGE (2.75G) (type 1 MS) | 236.8 kbit/s | 29.6 kB/s | 236.8 kbit/s | 29.6 kB/s | 2002 |
UMTS3G | 384 kbit/s | 48 kB/s | 384 kbit/s | 48 kB/s | |
EDGE (type 2 MS) | 473.6 kbit/s | 59.2 kB/s | 473.6 kbit/s | 59.2 kB/s | |
EDGE Evolution (type 1 MS) | 1184 kbit/s | 148 kB/s | 474 kbit/s | 59 kB/s | |
EDGE Evolution (type 2 MS) | 1894 kbit/s | 237 kB/s | 947 kbit/s | 118 kB/s | |
1×EV-DO rev. 0 | 2457 kbit/s | 307.2 kB/s | 153 kbit/s | 19 kB/s | |
1×EV-DO rev. A | 3.1 Mbit/s | 397 kB/s | 1.8 Mbit/s | 230 kB/s | |
LTE Cat 1 | 10 Mbit/s | 1250 kB/s | 5.2 Mbit/s | 650 kB/s | |
1×EV-DO rev. B | 14.7 Mbit/s | 1837 kB/s | 5.4 Mbit/s | 675 kB/s | |
HSPA (3.5G) | 13.98 Mbit/s | 1706 kB/s | 5.760 Mbit/s | 720 kB/s | |
4×EV-DO Enhancements (2×2 MIMO) | 34.4 Mbit/s | 4.3 MB/s | 12.4 Mbit/s | 1.55 MB/s | |
HSPA+ (2×2 MIMO) | 42 Mbit/s | 5.25 MB/s | 11.5 Mbit/s | 1.437 MB/s | |
LTE Cat 2 | 50 Mbit/s | 6.25 MB/s | 25 Mbit/s | 3.375 MB/s | |
15×EV-DO rev. B | 73.5 Mbit/s | 9.2 MB/s | 27 Mbit/s | 3.375 MB/s | |
LTE Cat 3 | 100 Mbit/s | 12.5 MB/s | 50 Mbit/s | 6.25 MB/s | |
UMB (2×2 MIMO) | 140 Mbit/s | 17.5 MB/s | 34 Mbit/s | 4.250 MB/s | |
LTE Cat 4 | 150 Mbit/s | 18.75 MB/s | 50 Mbit/s | 6.25 MB/s | |
LTE (2×2 MIMO) | 173 Mbit/s | 21.625 MB/s | 58 Mbit/s | 7.25 MB/s | 2004 |
UMB (4×4 MIMO) | 280 Mbit/s | 35 MB/s | 68 Mbit/s | 8.5 MB/s | |
EV-DO rev. C | 280 Mbit/s | 35 MB/s | 75 Mbit/s | 9 MB/s | |
LTE Cat 5 | 300 Mbit/s | 37.5 MB/s | 50 Mbit/s | 6.25 MB/s | |
LTE Cat 6 | 300 Mbit/s | 37.5 MB/s | 75 Mbit/s | 9.375 MB/s | |
LTE Cat 7 | 300 Mbit/s | 37.5 MB/s | 100 Mbit/s | 12.5 MB/s | |
LTE (4×4 MIMO) | 326 Mbit/s | 40.750 MB/s | 86 Mbit/s | 10.750 MB/s | |
LTE Cat 13 | 390 Mbit/s | 48.75 MB/s | 150 Mbit/s | 18.75 MB/s | |
LTE Cat 9 | 450 Mbit/s | 56.25 MB/s | 50 Mbit/s | 6.25 MB/s | |
LTE Cat 10 | 450 Mbit/s | 56.25 MB/s | 100 Mbit/s | 12.5 MB/s | |
LTE Cat 11 | 600 Mbit/s | 75 MB/s | 50 Mbit/s | 6.25 MB/s | |
LTE Cat 12 | 600 Mbit/s | 75 MB/s | 100 Mbit/s | 12.5 MB/s | |
LTE Cat 16 | 1000 Mbit/s | 125 MB/s | 50 Mbit/s | 6.25 MB/s | |
LTE Cat 18 | 1200 Mbit/s | 150 MB/s | 150 Mbit/s | 18.75 MB/s | |
LTE Cat 21 | 1400 Mbit/s | 175 MB/s | 300 Mbit/s | 37.5 MB/s | |
LTE Cat 20 | 2000 Mbit/s | 250 MB/s | 300 Mbit/s | 37.5 MB/s | |
LTE Cat 8 | 3 Gbit/s | 375 MB/s | 1.5 Gbit/s | 187 MB/s | |
LTE Cat 14 | 3.9 Gbit/s | 487 MB/s | 1.5 Gbit/s | 187 MB/s | |
5G NR | 10 Gbit/s | ? | 10 Gbit/s | ? | ? |
Technology | Rate | Year | |
---|---|---|---|
56k line | 56 kbit/s | 7 KB/s | 1990 |
DS0 | 64 kbit/s | 8 KB/s | |
G.lite (a.k.a. ADSL Lite) | 1.536/0.512 Mbit/s | 0.192/0.064 MB/s | |
DS1 /T1 (and ISDNPrimary Rate Interface) | 1.544 Mbit/s | 0.192 MB/s | 1990 |
E1 (and ISDN Primary Rate Interface) | 2.048 Mbit/s | 0.256 MB/s | |
G.SHDSL | 2.304 Mbit/s | 0.288 MB/s | |
SDSL[g] | 2.32 Mbit/s | 0.29 MB/s | |
LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) | 4 Mbit/s | 0.512 MB/s | |
T2 | 6.312 Mbit/s | 0.789 MB/s | |
ADSL[h] | 8.0/1.024 Mbit/s | 1.0/0.128 MB/s | |
E2 | 8.448 Mbit/s | 1.056 MB/s | |
ADSL2 | 12/3.5 Mbit/s | 1.5/0.448 MB/s | |
Satellite Internet[i] | 16/1 Mbit/s | 2.0/0.128 MB/s | |
ADSL2+ | 24/3.5 Mbit/s | 3.0/0.448 MB/s | |
E3 | 34.368 Mbit/s | 4.296 MB/s | |
DOCSIS 1.0 (cable modem)[13] | 38/9 Mbit/s | 4.75/1.125 MB/s | 1997 |
DOCSIS 2.0 (cable modem)[14] | 38/27 Mbit/s | 4.75/3.38 MB/s | 2002 |
DS3 /T3 ('45 Meg') | 44.736 Mbit/s | 5.5925 MB/s | |
STS-1 / OC-1 / STM-0 | 51.84 Mbit/s | 6.48 MB/s | |
VDSL (symmetry optional) | 100 Mbit/s | 12.5 MB/s | |
OC-3 /STM-1 | 155.52 Mbit/s | 19.44 MB/s | |
VDSL2 (symmetry optional) | 250 Mbit/s | 31.25 MB/s | |
T4 | 274.176 Mbit/s | 34.272 MB/s | |
T5 | 400.352 Mbit/s | 50.044 MB/s | |
OC-9 | 466.56 Mbit/s | 58.32 MB/s | |
OC-12 /STM-4 | 622.08 Mbit/s | 77.76 MB/s | |
OC-18 | 933.12 Mbit/s | 116.64 MB/s | |
DOCSIS 3.0 (cable modem)[16] | 1216/216 Mbit/s | 152/27 MB/s | 2006 |
OC-24 | 1.244 Gbit/s | 155.5 MB/s | |
OC-36 | 1.900 Gbit/s | 237.5 MB/s | |
OC-48 /STM-16 | 2.488 Gbit/s | 311.04 MB/s | |
OC-96 | 4.976 Gbit/s | 622.08 MB/s | |
OC-192 /STM-64 | 9.953 Gbit/s | 1.244125 GB/s | |
10 Gigabit Ethernet WAN PHY | 9.953 Gbit/s | 1.244125 GB/s | |
DOCSIS 3.1 (cable modem) | 10/2 Gbit/s | 1.25/0.25 GB/s | 2013 |
DOCSIS 4.0 (cable modem) | 10/6 Gbit/s | 1.25/0.75 GB/s | 2017 |
OC-256 | 13.271 Gbit/s | 1.659 GB/s | |
OC-768 / STM-256 | 39.813 Gbit/s | 4.976 GB/s | |
OC-1536 / STM-512 | 79.626 Gbit/s | 9.953 GB/s | |
OC-3072 / STM-1024 | 159.252 Gbit/s | 19.907 GB/s |
Technology | Rate | Year | |
---|---|---|---|
LocalTalk | 230 kbit/s | 28.8 kB/s | 1988 |
Econet | 800 kbit/s | 100 kB/s | 1981 |
Omninet | 1 Mbit/s | 125 kB/s | 1980 |
IBM PC Network | 2 Mbit/s | 250 kB/s | 1985 |
ARCNET (Standard) | 2.5 Mbit/s | 312.5 kB/s | 1977 |
Chaosnet (Original) | 4 Mbit/s | 3.0 Mbit/s | 1971 |
Token Ring (Original) | 4 Mbit/s | 500 kB/s | 1985 |
Ethernet (10BASE-X) | 10 Mbit/s | 1.25 MB/s | 1980 (1985 IEEE Standard) |
Token Ring (Later) | 16 Mbit/s | 2 MB/s | 1989 |
ARCnet Plus | 20 Mbit/s | 2.5 MB/s | 1992 |
TCNS | 100 Mbit/s | 12.5 MB/s | 1993? |
100VG | 100 Mbit/s | 12.5 MB/s | 1995 |
Token Ring IEEE 802.5t | 100 Mbit/s | 12.5 MB/s | |
Fast Ethernet (100BASE-X) | 100 Mbit/s | 12.5 MB/s | 1995 |
FDDI | 100 Mbit/s | 12.5 MB/s | |
MoCA 1.0[21] | 100 Mbit/s | 12.5 MB/s | |
MoCA 1.1[21] | 175 Mbit/s | 21.875 MB/s | |
HomePlug AV | 200 Mbit/s | 25 MB/s | 2005 |
FireWire (IEEE 1394) 400[j][k] | 400 Mbit/s | 50 MB/s | 1995 |
MoCa 2.0 | 500 Mbit/s | 62.5 MB/s | 2016 |
HIPPI | 800 Mbit/s | 100 MB/s | |
IEEE 1901 | 1000 Mbit/s | 125 MB/s | 2010 |
Token Ring IEEE 802.5v | 1 Gbit/s | 125 MB/s | 2001 |
Gigabit Ethernet (1000BASE-X) | 1 Gbit/s | 125 MB/s | 1998 |
Stanford DASH/NUMAlink 1 | 1.920 Gbit/s | 240 MB/s | ~1990 |
Myrinet 2000 | 2 Gbit/s | 250 MB/s | |
InfiniBand SDR 1×[24] | 2 Gbit/s | 250 MB/s | 2001, 2003 |
Reflective memory orRFM2 (1.25 μs latency) | 2 Gbit/s | 250 MB/s | 2017 |
RapidIO Gen1 1× | 2.5 Gbit/s | 312.5 MB/s | 2000 |
2.5 Gigabit Ethernet (2.5GBASE-T) | 2.5 Gbit/s | 312.5 MB/s | 2016 |
Quadrics QsNetI | 3.6 Gbit/s | 450 MB/s | |
InfiniBand DDR 1×[24] | 4 Gbit/s | 500 MB/s | 2005 |
RapidIO Gen2 1× | 5 Gbit/s | 625 MB/s | 2008 |
5 Gigabit Ethernet (5GBASE-T) | 5 Gbit/s | 625 MB/s | 2016 |
InfiniBand QDR 1×[24] | 8 Gbit/s | 1 GB/s | 2007 |
InfiniBand SDR 4×[24] | 8 Gbit/s | 1 GB/s | 2001, 2003 |
Quadrics QsNetII | 8 Gbit/s | 1 GB/s | |
RapidIO Gen1 4x | 10 Gbit/s | 1.25 GB/s | |
RapidIO Gen2 2x | 10 Gbit/s | 1.25 GB/s | 2008 |
10 Gigabit Ethernet (10GBASE-X) | 10 Gbit/s | 1.25 GB/s | 2002-2006 |
Myri 10G | 10 Gbit/s | 1.25 GB/s | |
InfiniBand FDR-10 1×[25] | 10 Gbit/s | 1.25 GB/s | 2011 |
NUMAlink 2 | 12.8 Gbit/s | 1.6 GB/s | 1996 |
InfiniBand FDR 1×[25] | 13.64 Gbit/s | 1.7 GB/s | 2011 |
InfiniBand SDR 8×[24] | 16 Gbit/s | 2 GB/s | 2001, 2003 |
InfiniBand DDR 4×[24] | 16 Gbit/s | 2 GB/s | 2005 |
RapidIO Gen2 4x | 20 Gbit/s | 2.5 GB/s | 2008 |
Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe | 20 Gbit/s | 2.5 GB/s | |
InfiniBand SDR 12×[24] | 24 Gbit/s | 3 GB/s | |
RapidIO Gen4 1× | 24.63 Gbit/s | 3.079 GB/s | 2016 |
InfiniBand EDR 1×[25] | 25 Gbit/s | 3.125 GB/s | 2014 |
25 Gigabit Ethernet (25GBASE-X) | 25 Gbit/s | 3.125 GB/s | 2016 |
NUMAlink 3 | 25.6 Gbit/s | 3.2 GB/s | 2000 |
InfiniBand DDR 8×[24] | 32 Gbit/s | 6 GB/s | 2005 |
InfiniBand QDR 4×[24] | 32 Gbit/s | 4 GB/s | 2007 |
RapidIO Gen2 8x | 40 Gbit/s | 5 GB/s | 2008 |
40 Gigabit Ethernet (40GBASE-X) 4× | 40 Gbit/s | 5 GB/s | 2010 |
InfiniBand FDR-10 4×[25] | 40 Gbit/s | 5 GB/s | 2011 |
InfiniBand DDR 12×[24] | 48 Gbit/s | 6 GB/s | 2005 |
50 Gigabit Ethernet (50GBASE-X) | 50 Gbit/s | 6.25 GB/s | 2016 |
InfiniBand HDR 1×[26] | 50 Gbit/s | 6.25 GB/s[25] | 2017 |
NUMAlink 4 | 51.2 Gbit/s | 6.4 GB/s | 2004 |
NUMAlink 6 | 53.6 Gbit/s | 6.7 GB/s | 2012 |
InfiniBand FDR 4×[25] | 54.56 Gbit/s | 6.82 GB/s | 2011 |
InfiniBand QDR 8×[24] | 64 Gbit/s | 4 GB/s | 2007 |
RapidIO Gen2 16× | 80 Gbit/s | 10 GB/s | 2008 |
InfiniBand FDR-10 8×[25] | 80 Gbit/s | 5 GB/s | 2011 |
InfiniBand QDR 12×[24] | 96 Gbit/s | 12 GB/s | 2007 |
InfiniBand EDR 4×[25] | 100 Gbit/s | 12.5 GB/s | 2014 |
100 Gigabit Ethernet (100GBASE-X) 10×/4× | 100 Gbit/s | 12.5 GB/s | 2010/2018 |
Omni-Path | 100 Gbit/s | 12.5 GB/s | 2015 |
InfiniBand NDR 1× | 100 Gbit/s | 12.5 GB/s[25] | 2022 |
NUMAlink 8 (Flex ASIC) | 106.4 Gbit/s | 13.3 GB/s | 2017 |
InfiniBand FDR 8×[25] | 109.12 Gbit/s | 13.64 GB/s | 2011 |
NUMAlink 7 | 119.52 Gbit/s | 14.94 GB/s | 2014 |
NUMAlink 5 | 120 Gbit/s | 15 GB/s | 2009 |
InfiniBand FDR-10 12×[25] | 120 Gbit/s | 15 GB/s | 2011 |
InfiniBand FDR 12×[25] | 163.68 Gbit/s | 20.45 GB/s | 2011 |
InfiniBand EDR 8×[25] | 200 Gbit/s | 25 GB/s | 2014 |
InfiniBand HDR 4×[26] | 200 Gbit/s | 25 GB/s[25] | 2017 |
200 Gigabit Ethernet (200GBASE-X) | 200 Gbit/s | 25 GB/s | 2017 |
InfiniBand XDR 1× | 200 Gbit/s | 25 GB/s[25] | 2024 |
InfiniBand EDR 12×[25] | 300 Gbit/s | 37.5 GB/s | 2014 |
400 Gigabit Ethernet (400GBASE-X) | 400 Gbit/s | 50 GB/s | 2017 |
InfiniBand HDR 8×[26] | 400 Gbit/s | 50 GB/s[25] | 2017 |
InfiniBand NDR 4× | 400 Gbit/s | 50 GB/s[25] | 2022 |
InfiniBand GDR 1× | 400 Gbit/s | 50 GB/s[25] | TBA |
InfiniBand HDR 12×[26] | 600 Gbit/s | 75 GB/s[25] | 2017 |
InfiniBand NDR 8× | 800 Gbit/s | 100 GB/s[25] | 2022 |
InfiniBand XDR 4× | 800 Gbit/s | 100 GB/s[25] | 2024 |
800 Gigabit Ethernet (800GBASE-X) | 800 Gbit/s | 100 GB/s | 2024 |
InfiniBand NDR 12× | 1200 Gbit/s | 150 GB/s[25] | 2022 |
InfiniBand XDR 8× | 1600 Gbit/s | 200 GB/s[25] | 2024 |
InfiniBand GDR 4× | 1600 Gbit/s | 200 GB/s[25] | TBA |
InfiniBand XDR 12× | 2400 Gbit/s | 300 GB/s[25] | 2024 |
InfiniBand GDR 8× | 3200 Gbit/s | 400 GB/s[25] | TBA |
InfiniBand GDR 12× | 4800 Gbit/s | 600 GB/s[25] | TBA |
802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In infrastructure or access point mode, all traffic has to pass through anAccess Point (AP). Thus, two stations on the same access point that are communicating with each other must have each and every frame transmitted twice: from the sender to the access point, then from the access point to the receiver. This approximately halves the effective bandwidth.
802.11 networks in ad hoc mode are still half-duplex, but devices communicate directly rather than through an access point. In this mode all devices must be able tosee each other, instead of only having to be able tosee the access point.
Standard | Maximum Link Rate | Year | |
---|---|---|---|
Classic WaveLAN | 2 Mbit/s | 250 kB/s | 1988 |
IEEE 802.11 | 2 Mbit/s | 250 kB/s | 1997 |
RONJA (full duplex) | 10 Mbit/s | 1.25 MB/s | 2001 |
IEEE 802.11a | 54 Mbit/s | 6.75 MB/s | 1999 |
IEEE 802.11b | 11 Mbit/s | 1.375 MB/s | 1999 |
IEEE 802.11g | 54 Mbit/s | 6.75 MB/s | 2003 |
IEEE 802.16 (WiMAX) | 70 Mbit/s | 8.75 MB/s | 2004 |
IEEE 802.11g with Super G by Atheros | 108 Mbit/s | 13.5 MB/s | 2003 |
IEEE 802.11g with 125 High Speed Mode by Broadcom | 125 Mbit/s | 15.625 MB/s | 2003 |
IEEE 802.11g with Nitro by Conexant | 140 Mbit/s | 17.5 MB/s | 2003 |
IEEE 802.11n (aka Wi-Fi 4) | 600 Mbit/s | 75 MB/s | 2009 |
IEEE 802.11ac (aka Wi-Fi 5) | 6.8–6.93 Gbit/s | 850–866.25 MB/s | 2012 |
IEEE 802.11ad | 7.14–7.2 Gbit/s | 892.5–900 MB/s | 2011 |
IEEE 802.11ax (aka Wi-Fi 6/6E) | 11 Gbit/s | 1.375 GB/s | 2019 |
IEEE 802.11be (aka Wi-Fi 7 or Extremely High Throughput (EHT)) | 46.12 Gbit/s expected | 5.765 GB/s expected | Late 2024 expected |
IEEE 802.11bn (aka Wi-Fi 8 or Ultra High Reliability (UHR)) | 100 Gbit/s expected | 12.5 GB/s expected | 2028 expected |
IEEE 802.11ay (aka Enhanced Throughput for Operation in License -exempt Bands above 45 GHz) | 176 Gbit/s expected | 22 GB/s expected | March 2021 standardized |
Technology | Rate | Year | |
---|---|---|---|
ANT | 20 kbit/s | 2.5 kB/s | |
IrDA-Control | 72 kbit/s | 9 kB/s | |
IrDA-SIR | 115.2 kbit/s | 14 kB/s | |
802.15.4 (2.4 GHz) | 250 kbit/s | 31.25 kB/s | |
Bluetooth 1.1 | 1 Mbit/s | 125 kB/s | 2002 |
Bluetooth 2.0+EDR | 3 Mbit/s | 375 kB/s | 2004 |
IrDA-FIR | 4 Mbit/s | 500 kB/s | |
IrDA-VFIR | 16 Mbit/s | 2 MB/s | |
Bluetooth 3.0 | 25 Mbit/s | 3.125 MB/s | 2009 |
Bluetooth 4.0 | 25 Mbit/s | 3.125 MB/s | 2010 |
Bluetooth 5.0 | 50 Mbit/s | 6.25 MB/s | 2016 |
IrDA-UFIR | 96 Mbit/s | 12 MB/s | |
WUSB-UWB | 480 Mbit/s | 60 MB/s | |
IrDA-Giga-IR | 1024 Mbit/s | 128 MB/s |
Computer buses
editMain buses
editTechnology | Rate | Year | |
---|---|---|---|
I²C | 3.4 Mbit/s | 425 kB/s | 1992 (standardized) |
Apple II (incl.Apple IIGS) 8-bit/1 MHz | 8 Mbit/s | 1 MB/s[27][28] | 1977 |
SS-50 Bus 8-bit/1 MHz | 8 Mbit/s | 1 MB/s | 1975 |
Unibus 16-bit/async | 12 Mbit/s | 1.5 MB/s | 1969 |
STD-80 8-bit/8 MHz | 16 Mbit/s | 2 MB/s | |
Q-bus 16-bit/async | 24 Mbit/s | 3 MB/s | 1975 |
ISA 8-Bit/4.77 MHz | 0 W/S: every 4 clocks 8 bits 1 W/S: every 5 clocks 8 bits | 0 W/S: every 4 clocks 1 byte 1 W/S: every 5 clocks 1 byte | 1981 (created) |
STD-80 16-bit/8 MHz | 32 Mbit/s | 4 MB/s | |
I3C (HDR mode)[29] | 33.3 Mbit/s | 4.16 MB/s | 2017 |
Zorro II 16-bit/7.14 MHz[30] | 42.4 Mbit/s | 5.3 MB/s | 1986 |
ISA 16-Bit/8.33 MHz | 66.64 Mbit/s | 8.33 MB/s | 1984 (created) |
Europe Card Bus 8-Bit/10 MHz | 66.7 Mbit/s | 8.33 MB/s | 1977 (created) |
S-100 bus 8-bit/10 MHz | 80 Mbit/s | 10 MB/s | 1976 (published) |
Serial Peripheral Interface (Up to 100 MHz) | 100 Mbit/s | 12.5 MB/s | 1989 |
Low Pin Count | 125 Mbit/s | 15.63 MB/s[x] | 2002 |
STEbus 8-Bit/16 MHz | 128 Mbit/s | 16 MB/s | 1987 (standardized) |
C-Bus 16-bit/10 MHz | 160 Mbit/s | 20 MB/s[31] | 1982 |
HP Precision Bus | 184 Mbit/s | 23 MB/s | |
STD-32 32-bit/8 MHz | 256 Mbit/s | 32 MB/s[32] | |
NESA 32-bit/8 MHz | 256 Mbit/s | 32 MB/s[33] | |
EISA 32-bit/8.33 MHz | 266.56 Mbit/s | 33.32 MB/s | 1988 |
VME64 32-64bit | 400 Mbit/s | 40 MB/s | 1981 |
MCA 32bit/10 MHz | 400 Mbit/s | 40 MB/s | 1987 |
NuBus 10 MHz | 400 Mbit/s | 40 MB/s | 1987 (standardized) |
DECTURBOchannel 32-bit/12.5 MHz | 400 Mbit/s | 50 MB/s | |
NuBus90 20 MHz | 800 Mbit/s | 80 MB/s | 1991 |
MCA 32bit/20 MHz | 800 Mbit/s | 80 MB/s[34] | 1992 |
APbus 32-bit/25(?) MHz | 800 Mbit/s | 100 MB/s[35] | |
Sbus 32-bit/25 MHz | 800 Mbit/s | 100 MB/s | 1989 |
DEC TURBOchannel 32-bit/25 MHz | 800 Mbit/s | 100 MB/s | |
Local Bus 98 32-bit/33 MHz | 1056 Mbit/s | 132 MB/s[36] | |
VESA Local Bus (VLB) 32-bit/33 MHz | 1067 Mbit/s | 133.33 MB/s | 1992 |
PCI 32-bit/33 MHz | 1067 Mbit/s | 133.33 MB/s | 1993 |
HP GSC-1X | 1136 Mbit/s | 142 MB/s | |
Zorro III 32-bit/async (eq. 37.5 MHz)[37][38] | 1200 Mbit/s | 150 MB/s[39] | 1990 |
VESA Local Bus (VLB) 32-bit/40 MHz | 1280 Mbit/s | 160 MB/s | 1992 |
Sbus 64-bit/25 MHz | 1.6 Gbit/s | 200 MB/s | 1995 |
HP GSC-2X | 2.048 Gbit/s | 256 MB/s | |
PCI 64-bit/33 MHz | 2.133 Gbit/s | 266.7 MB/s | 1993 |
PCI 32-bit/66 MHz | 2.133 Gbit/s | 266.7 MB/s | 1995 |
AGP 1× | 2.133 Gbit/s | 266.7 MB/s | 1997 |
PCI Express 1.0 (×1 link)[l] | 2.5 Gbit/s | 250 MB/s[z] | 2004 |
RapidIO Gen1 1× | 2.5 Gbit/s | 312.5 MB/s | |
HIO bus | 2.560 Gbit/s | 320 MB/s | |
GIO64 64-bit/40 MHz | 2.560 Gbit/s | 320 MB/s | |
PCI Express 2.0 (×1 link)[m] | 5 Gbit/s | 500 MB/s[z] | 2007 |
AGP 2× | 4.266 Gbit/s | 533.3 MB/s | 1997 |
PCI 64-bit/66 MHz | 4.266 Gbit/s | 533.3 MB/s | |
PCI-X DDR 16-bit | 4.266 Gbit/s | 533.3 MB/s | |
RapidIO Gen2 1× | 5 Gbit/s | 625 MB/s | |
PCI 64-bit/100 MHz | 6.4 Gbit/s | 800 MB/s | |
PCI Express 3.0 (×1 link)[n] | 8 Gbit/s | 984.6 MB/s[y] | 2011 |
Unified Media Interface (UMI) (×4 link) | 10 Gbit/s | 1 GB/s[z] | 2011 |
Direct Media Interface (DMI) (×4 link) | 10 Gbit/s | 1 GB/s[z] | 2004 |
Enterprise Southbridge Interface (ESI) | 8 Gbit/s | 1 GB/s | |
PCI Express 1.0 (×4 link)[l] | 10 Gbit/s | 1 GB/s[z] | 2004 |
AGP 4× | 8.533 Gbit/s | 1.067 GB/s | 1998 |
PCI-X 133 | 8.533 Gbit/s | 1.067 GB/s | |
PCI-X QDR 16-bit | 8.533 Gbit/s | 1.067 GB/s | |
InfiniBand single 4×[24] | 8 Gbit/s | 1 GB/s[z] | |
RapidIO Gen1 4× | 10 Gbit/s | 1.25 GB/s | |
RapidIO Gen2 2× | 10 Gbit/s | 1.25 GB/s | |
UPA | 15.360 Gbit/s | 1.92 GB/s | |
Unified Media Interface 2.0 (UMI 2.0; ×4 link) | 20 Gbit/s | 2 GB/s[z] | 2012 |
Direct Media Interface 2.0 (DMI 2.0; ×4 link) | 20 Gbit/s | 2 GB/s[z] | 2011 |
PCI Express 1.0 (×8 link)[l] | 20 Gbit/s | 2 GB/s[z] | 2004 |
PCI Express 2.0 (×4 link)[m] | 20 Gbit/s | 2 GB/s[z] | 2007 |
AGP 8× | 17.066 Gbit/s | 2.133 GB/s | 2002 |
PCI-X DDR | 17.066 Gbit/s | 2.133 GB/s | |
RapidIO Gen2 4× | 20 Gbit/s | 2.5 GB/s | |
Sun JBus (200 MHz) | 20.48 Gbit/s | 2.56 GB/s | 2003 |
HyperTransport (800 MHz, 16-pair) | 25.6 Gbit/s | 3.2 GB/s | 2001 |
PCI Express 3.0 (×4 link)[n] | 32 Gbit/s | 3.94 GB/s[y] | 2011 |
HyperTransport (1 GHz, 16-pair) | 32 Gbit/s | 4 GB/s | |
PCI Express 1.0 (×16 link)[l] | 40 Gbit/s | 4 GB/s[z] | 2004 |
PCI Express 2.0 (×8 link)[m] | 40 Gbit/s | 4 GB/s[z] | 2007 |
PCI-X QDR | 34.133 Gbit/s | 4.266 GB/s | |
AGP 8× 64-bit | 34.133 Gbit/s | 4.266 GB/s | |
RapidIO Gen2 8x | 40 Gbit/s | 5 GB/s | |
Direct Media Interface 3.0 (DMI 3.0; ×4 link) | 31.5 Gbit/s | 3.94 GB/s[y] | 2015 |
CXL Specification 3.0 & 3.1 (×1 link) | 60.504 Gbit/s | 7.563 GB/s | 2022, 2023 |
PCI Express 3.0 (×8 link)[n] | 64 Gbit/s | 7.88 GB/s[y] | 2011 |
PCI Express 2.0 (×16 link)[n] | 80 Gbit/s | 8 GB/s[z] | 2007 |
RapidIO Gen2 16x | 80 Gbit/s | 10 GB/s | |
PCI Express 5.0 (×4 link) | 128 Gbit/s | 15.75 GB/s[y] | 2019 |
PCI Express 3.0 (×16 link)[n] | 128 Gbit/s | 15.75 GB/s[y] | 2011 |
CAPI | 128 Gbit/s | 15.75 GB/s[y] | 2014 |
QPI (4.80GT/s, 2.40 GHz) | 153.6 Gbit/s | 19.2 GB/s | |
HyperTransport 2.0 (1.4 GHz, 32-pair) | 179.2 Gbit/s | 22.4 GB/s | 2004 |
QPI (5.86GT/s, 2.93 GHz) | 187.52 Gbit/s | 23.44 GB/s | |
QPI (6.40GT/s, 3.20 GHz) | 204.8 Gbit/s | 25.6 GB/s | |
QPI (7.2GT/s, 3.6 GHz) | 230.4 Gbit/s | 28.8 GB/s | 2012 |
PCI Express 6.0 (×4 link) | 242 Gbit/s | 30.25 GB/s[w] | 2022 |
PCI Express 4.0 (×16 link)[40] | 256 Gbit/s | 31.51 GB/s[y] | 2018 |
CAPI 2 | 256 Gbit/s | 31.51 GB/s[y] | 2016 |
QPI (8.0GT/s, 4.0 GHz) | 256.0 Gbit/s | 32.0 GB/s | 2012 |
QPI (9.6GT/s, 4.8 GHz) | 307.2 Gbit/s | 38.4 GB/s | 2014 |
HyperTransport 3.0 (2.6 GHz, 32-pair) | 332.8 Gbit/s | 41.6 GB/s | 2006 |
HyperTransport 3.1 (3.2 GHz, 32-pair) | 409.6 Gbit/s | 51.2 GB/s | 2008 |
CXL Specification 1.x & 2.0 (×16 link) | 512 Gbit/s | 63.02 GB/s | 2019, 2020 |
PCI Express 5.0 (×16 link)[41] | 512 Gbit/s | 63.02 GB/s[y] | 2019 |
NVLink 1.0 | 640 Gbit/s | 80 GB/s | 2016 |
PCI Express 6.0 (×16 link)[42] | 968 Gbit/s | 121 GB/s[w] | 2022 |
CXL Specification 3.0 & 3.1 (×16 link) | 968 Gbit/s | 121 GB/s | 2022, 2023 |
NVLink 2.0 | 1.2 Tbit/s | 150 GB/s | 2017 |
PCI Express 7.0 (×16 link) | 1.936 Tbit/s | 242 GB/s[w] | 2025 |
Infinity Fabric (Max. theoretical) | 4.096 Tbit/s | 512 GB/s | 2017 |
x LPC protocol includes high overhead. While the gross data rate equals 33.3 million 4-bit-transfers per second (or16.67 MB/s), the fastest transfer, firmware read, results in15.63 MB/s. The next fastest bus cycle, 32-bit ISA-style DMA write, yields only6.67 MB/s. Other transfers may be as low as2 MB/s.[43]
y Uses128b/130b encoding, meaning that about 1.54% of each transfer is used for error detection instead of carrying data between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface has an8 Gbit/s transfer rate, yet its usable bandwidth is only about7.88 Gbit/s.
z Uses8b/10b encoding, meaning that 20% of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a2.5 Gbit/s transfer rate, yet its usable bandwidth is only2 Gbit/s (250 MB/s).
w UsesPAM-4 encoding and a 256 bytesFLIT block, of which 14 bytes areFEC andCRC, meaning that 5.47% of total data rate is used for error detection and correction instead of carrying data. For example, a single link PCIe 6.0 interface has a64 Gbit/s total transfer rate, yet its usable bandwidth is only60.5 Gbit/s.
Portable
editTechnology | Rate | Year | |
---|---|---|---|
PC Card 16-bit 255 ns byte mode | 31.36 Mbit/s | 3.92 MB/s | 1990 |
PC Card 16-bit 255 ns word mode | 62.72 Mbit/s | 7.84 MB/s | |
PC Card 16-bit 100 ns byte mode | 80 Mbit/s | 10 MB/s | |
PC Card 16-bit 100 ns word mode | 160 Mbit/s | 20 MB/s | |
PC Card 32-bit (CardBus) byte mode | 267 Mbit/s | 33.33 MB/s | |
ExpressCard 1.2USB 2.0 mode | 480 Mbit/s | 60 MB/s | 2003 |
PC Card 32-bit (CardBus) word mode | 533 Mbit/s | 66.66 MB/s | |
PC Card 32-bit (CardBus) doubleword mode | 1067 Mbit/s | 133.33 MB/s | |
ExpressCard 1.2PCI Express mode | 2500 Mbit/s | 250 MB/s | 2008 |
ExpressCard 2.0 USB 3.0 mode | 4800 Mbit/s | 600 MB/s | |
ExpressCard 2.0 PCI Express mode | 5000 Mbit/s | 625 MB/s | 2009 |
Storage
editTechnology | Rate | Year | |
---|---|---|---|
Teletype Model 33 paper tape | 80 bit/s | 10 B/s | 1963 |
TRS-80 Model 1 Level 1 BASIC cassette tape interface | 250 bit/s | 32 B/s | 1977 |
C2NCommodore Datasette 1530 cassette tape interface | 300 bit/s | 15 B/s | 1977 |
Apple II cassette tape interface | 1.5 kbit/s | 200 B/s | 1977 |
Amstrad CPC tape | 2.0 kbit/s | 250 B/s | 1984 |
Single Density 8-inch FMFloppy Disk Controller (160 KB) | 250 kbit/s | 31 KB/s | 1973 |
Single Density 5.25-inch FMFloppy Disk Controller (180 KB) | 125 kbit/s | 15.5 KB/s | 1978 |
High Density MFMFloppy Disk Controller (1.2 MB/1.44 MB) | 250 kbit/s | 31 KB/s | 1984 |
CD Controller (1×) | 1.171 Mbit/s | 0.146 MB/s | 1988 |
MFM hard disk | 5 Mbit/s | 0.625 MB/s | 1980 |
RLL hard disk | 7.5 Mbit/s | 0.937 MB/s | |
DVD Controller (1×) | 11.1 Mbit/s | 1.32 MB/s | |
Massbus | 32 Mbit/s | 2 MB/s | 1972 |
ESDI | 24 Mbit/s | 3 MB/s | |
ATAPIO Mode 0 | 26.4 Mbit/s | 3.3 MB/s | 1986 |
HD DVD Controller (1×) | 36 Mbit/s | 4.5 MB/s | |
Blu-ray Controller (1×) | 36 Mbit/s | 4.5 MB/s | |
SCSI (Narrow SCSI) (5 MHz)[o] | 40 Mbit/s | 5 MB/s | 1986 |
ATA PIO Mode 1 | 41.6 Mbit/s | 5.2 MB/s | 1994 |
ATA PIO Mode 2 | 66.4 Mbit/s | 8.3 MB/s | 1994 |
Fast SCSI (8 bits/10 MHz) | 80 Mbit/s | 10 MB/s | |
ATA PIO Mode 3 | 88.8 Mbit/s | 11.1 MB/s | 1996 |
AoE over Fast Ethernet[p] | 100 Mbit/s | 11.9 MB/s | 2009 |
iSCSI over Fast Ethernet[q] | 100 Mbit/s | 11.9 MB/s | 2004 |
ATA PIO Mode 4 | 133.3 Mbit/s | 16.7 MB/s | 1996 |
Fast Wide SCSI (16 bits/10 MHz) | 160 Mbit/s | 20 MB/s | |
Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) | 160 Mbit/s | 20 MB/s | |
SD (High Speed) | 200 Mbit/s | 25 MB/s | |
UltraDMAATA 33 | 264 Mbit/s | 33 MB/s | 1998 |
Ultra Wide SCSI (16 bits/20 MHz) | 320 Mbit/s | 40 MB/s | |
Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) | 320 Mbit/s | 40 MB/s | |
SDHC/SDXC/SDUC (UHS-I Full Duplex) | 400 Mbit/s | 50 MB/s | |
Ultra DMAATA 66 | 533.6 Mbit/s | 66.7 MB/s | 2000 |
Blu-ray Controller (16×) | 576 Mbit/s | 72 MB/s | |
Ultra-2 wide SCSI (16 bits/40 MHz) | 640 Mbit/s | 80 MB/s | |
Serial Storage Architecture SSA | 640 Mbit/s | 80 MB/s | 1990 |
Ultra DMAATA 100 | 800 Mbit/s | 100 MB/s | 2002 |
Fibre Channel 1GFC (1.0625 GHz)[r] | 850 Mbit/s | 103.23 MB/s | 1997 |
AoE over gigabit Ethernet, jumbo frames[s] | 1 Gbit/s | 124.2 MB/s | 2009 |
iSCSI over gigabit Ethernet,jumbo frames[t] | 1 Gbit/s | 123.9 MB/s | 2004 |
Ultra DMAATA 133 | 1.064 Gbit/s | 133 MB/s | 2005 |
SDHC/SDXC/SDUC (UHS-II Full Duplex) | 1.25 Gbit/s | 156 MB/s | |
Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) | 1.28 Gbit/s | 160 MB/s | |
SATA revision 1.0[u] | 1.500 Gbit/s | 150 MB/s[a] | 2003 |
Fibre Channel 2GFC (2.125 GHz)[r] | 1.700 Gbit/s | 206.5 MB/s | 2001 |
Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) | 2.560 Gbit/s | 320 MB/s | |
Serial Attached SCSI (SAS) SAS-1[u] | 3 Gbit/s | 300 MB/s[a] | 2004 |
SATA Revision 2.0[u] | 3 Gbit/s | 300 MB/s[a] | 2004 |
SDHC/SDXC/SDUC (UHS-III Full Duplex) | 2.5 Gbit/s | 312 MB/s | |
Fibre Channel 4GFC (4.25 GHz)[r] | 3.4 Gbit/s | 413 MB/s | 2004 |
Serial Attached SCSI (SAS) SAS-2[u] | 6 Gbit/s | 600 MB/s[a] | 2009 |
SATA Revision 3.0[u] | 6 Gbit/s | 600 MB/s[a] | 2008 |
Fibre Channel 8GFC (8.50 GHz)[r] | 6.8 Gbit/s | 826 MB/s | 2005 |
SDHC/SDXC/SDUC (SD Express) | 7.9 Gbit/s | 985 MB/s | |
AoE over10GbE[s] | 10 Gbit/s | 1.242 GB/s | 2009 |
iSCSI over10GbE[t] | 10 Gbit/s | 1.239 GB/s | 2004 |
FCoE over10GbE[v] | 10 Gbit/s | 1.206 GB/s | 2009 |
Serial Attached SCSI (SAS) SAS-3[u] | 12 Gbit/s | 1.2 GB/s | 2013 |
Fibre Channel 16GFC (14.025 GHz)[r] | 13.6 Gbit/s | 1.652 GB/s[b] | 2011 |
SATA Express | 16 Gbit/s | 2 GB/s | 2013 |
Serial Attached SCSI (SAS) SAS-4 | 22.5 Gbit/s | 2.4 GB/s[c] | 2017 |
UFS (version 3.0) | 23.2 Gbit/s | 2.9 GB/s | 2018 |
Fibre Channel 32GFC (28.05 GHz)[r] | 26.424 Gbit/s | 3.303 GB/s[b] | 2016 |
NVMe overM.2 orU.2 (using PCI Express 3.0 ×4 link)[n] | 32 Gbit/s | 3.938 GB/s | 2013 |
iSCSI overInfiniBand 4× | 32 Gbit/s | 4 GB/s | 2007 |
NVMe overM.2 orU.2 (using PCI Express 4.0 ×4 link) | 64 Gbit/s | 7.876 GB/s | 2017 |
iSCSI over 100G Ethernet[t] | 100 Gbit/s | 12.392 GB/s | 2010 |
FCoE over 100G Ethernet[v] | 100 Gbit/s | 12.064 GB/s | 2010 |
NVMe overM.2,U.2,U.3 orEDSFF (using PCI Express 5.0 ×4 link) | 128 Gbit/s | 15.754 GB/s | 2019 |
a Uses8b/10b encodingb Uses64b/66b encodingc Uses 128b/150b encoding
Peripheral
editTechnology | Rate | Year | |
---|---|---|---|
Apple Desktop Bus | 10.0 kbit/s | 1.25 kB/s | 1986 |
PS/2 port | 12.0 kbit/s | 1.5 kB/s | 1987 |
SerialMIDI | 31.25 kbit/s | 3.9 kB/s | 1983 |
CBM Bus max[w][44] | 41.6 kbit/s | 5.1 kB/s | 1981 |
SerialRS-232 max | 230.4 kbit/s | 28.8 kB/s | 1962 |
SerialDMX512A | 250.0 kbit/s | 31.25 kB/s | 1998 |
Parallel (Centronics/IEEE 1284) | 1 Mbit/s | 125 kB/s | 1970 (standardized 1994) |
Serial16550 UART max | 1.5 Mbit/s | 187.5 kB/s | |
USB 1.0 low speed | 1.536 Mbit/s | 192 kB/s | 1996 |
SerialUART max | 2.7648 Mbit/s | 345.6 kB/s | |
GPIB/HPIB (IEEE-488.1)IEEE-488 max. | 8 Mbit/s | 1 MB/s | Late 1960s (standardized 1976) |
SerialEIA-422 max. | 10 Mbit/s | 1.25 MB/s | |
USB 1.0 full speed | 12 Mbit/s | 1.5 MB/s | 1996 |
Parallel (Centronics/IEEE 1284) EPP (Enhanced Parallel Port) | 16 Mbit/s | 2 MB/s | 1992 |
Parallel (Centronics/IEEE 1284) ECP (Extended Capability Port) | 20 Mbit/s | 2.5 MB/s | 1994 |
SerialEIA-485 max. | 35 Mbit/s | 4.375 MB/s | |
GPIB/HPIB (IEEE-488.1-2003)IEEE-488 max. | 64 Mbit/s | 8 MB/s | |
FireWire (IEEE 1394) 100 | 98.304 Mbit/s | 12.288 MB/s | 1995 |
FireWire (IEEE 1394) 200 | 196.608 Mbit/s | 24.576 MB/s | 1995 |
FireWire (IEEE 1394) 400 | 393.216 Mbit/s | 49.152 MB/s | 1995 |
USB 2.0 high speed | 480 Mbit/s | 60 MB/s | 2000 |
FireWire (IEEE 1394b) 800[45] | 786.432 Mbit/s | 98.304 MB/s | 2002 |
Fibre Channel 1 GbSCSI | 1.0625 Gbit/s | 100 MB/s | |
FireWire (IEEE 1394b) 1600[45] | 1.573 Gbit/s | 196.6 MB/s | 2007 |
Fibre Channel 2 GbSCSI | 2.125 Gbit/s | 200 MB/s | |
eSATA (SATA 300) | 3 Gbit/s | 300 MB/s | 2004 |
CoaXPress Base (up and down bidirectional link) | 3.125 Gbit/s +20.833 Mbit/s | 390 MB/s | 2009 |
FireWire (IEEE 1394b) 3200[45] | 3.1457 Gbit/s | 393.216 MB/s | 2007 |
External PCI Express 2.0 ×1 | 4 Gbit/s | 500 MB/s | |
Fibre Channel 4 GbSCSI | 4.25 Gbit/s | 531.25 MB/s | |
USB 3.0 SuperSpeed (aka USB 3.1 Gen 1, USB 3.2 Gen 1x1) | 5 Gbit/s | 500 MB/s | 2010 |
eSATA (SATA 600) | 6 Gbit/s | 600 MB/s | 2011 |
CoaXPress full (up and down bidirectional link) | 6.25 Gbit/s +20.833 Mbit/s | 781 MB/s | 2009 |
External PCI Express 2.0 ×2 | 8 Gbit/s | 1 GB/s | |
USB 3.1 SuperSpeed+ (aka USB 3.1 Gen 2, USB 3.2 Gen 1x2, USB 3.2 Gen 2x1, USB4 Gen 2×1) | 10 Gbit/s | 1.212 GB/s | 2013 |
External PCI Express 2.0 ×4 | 16 Gbit/s | 2 GB/s | |
Thunderbolt | 2 ×10 Gbit/s | 2 ×1.25 GB/s | 2011 |
USB 3.2 SuperSpeed+ (aka USB 3.2 Gen 2×2 USB4 Gen 2×2, USB4 Gen 3×1)[46] | 20 Gbit/s | 2.424 GB/s | 2017 |
Thunderbolt 2 | 20 Gbit/s | 2.5 GB/s | 2013 |
FPGA Mezzanine Card Plus (FMC+)[47] | 28 Gbit/s | 3.5 GB/s | 2019 |
External PCI Express 2.0 ×8 | 32 Gbit/s | 4 GB/s | |
USB4 Gen 3×2[48] | 40 Gbit/s | 4.8 GB/s | 2019 |
Thunderbolt 3 two links | 40 Gbit/s | 5 GB/s | 2015 |
Thunderbolt 4 | 40 Gbit/s | 5 GB/s | 2020 |
External PCI Express 2.0 ×16 | 64 Gbit/s | 8 GB/s | |
USB4 Gen 4[49] | 80 Gbit/s | 9.6 GB/s | 2022 |
Thunderbolt 5 | 80 Gbit/s | 9.6 GB/s | 2024 |
USB4 Gen 4 Asymmetric | 120 Gbit/s | 14.4 GB/s | 2022 |
Thunderbolt 5 Asymmetric | 120 Gbit/s | 14.4 GB/s | 2024 |
Technology | Channels | Bits | MGT Lanes | Rate | Year | |||
---|---|---|---|---|---|---|---|---|
Count | Encoding | Rate | ||||||
Media Independent Interface (MII) | 1 | 4 | 100 Mbit/s | 12.5 MB/s | ||||
Reduced MII (RMII) | 1 | 2 | 100 Mbit/s | 12.5 MB/s | ||||
Serial MII (SMII) | 1 | 1 | 100 Mbit/s | 12.5 MB/s | ||||
Gigabit MII (GMII) | 1 | 8 | 1.0 Gbit/s | 125 MB/s | ||||
Reduced gigabit/s MII (RGMII) | 1 | 4 | 1.0 Gbit/s | 125 MB/s | ||||
Ten-bit interface (TBI) | 1 | 10 | 1.0 Gbit/s | 125 MB/s | ||||
Serial gigabit/s MII (SGMII) | 1 | 1 | 8b/10b | 1.25 Gbit/s | 1.0 Gbit/s | 125 MB/s | ||
Reduced serial gigabit/s MII (RSGMII) | 2 | 1 | 8b/10b | 2.5 Gbit/s | 2.0 Gbit/s | 250 MB/s | ||
Reduced serial gigabit/s MII plus (RSGMII-PLUS) | 4 | 1 | 8b/10b | 5.0 Gbit/s | 4.0 Gbit/s | 500 MB/s | ||
Quad serial gigabit/s MII (QSGMII) | 4 | 1 | 8b/10b | 5.0 Gbit/s | 4.0 Gbit/s | 500 MB/s | ||
10 gigabit/s MII (XGMII) | 1 | 32 | 10.0 Gbit/s | 1.25 GB/s | ||||
XGMII attachment unit interface (XAUI) | 1 | 4 | 8b/10b | 3.125 Gbit/s | 10.0 Gbit/s | 1.25 GB/s | ||
Reduced Pin XAUI (RXAUI) | 1 | 2 | 8b/10b | 6.25 Gbit/s | 10.0 Gbit/s | 1.25 GB/s | ||
XFI/SFI | 1 | 1 | 64b/66b | 10.3125 Gbit/s | 10.0 Gbit/s | 1.25 GB/s | ||
USXGMII | 1 | 1 | 64b/66b | 10.3125 Gbit/s | 10.0 Gbit/s | 1.25 GB/s | ||
25 gigabit/s MII (25GMII, on-chip only) | 1 | 25.0 Gbit/s | 3.125 GB/s | |||||
25G AUI (25GAUI) | 1 | 1 | 64b/66b | 25.78125 Gbit/s | 25.0 Gbit/s | 3.125 GB/s | ||
40 gigabit/s MII (XLGMII, on-chip only) | 1 | 40.0 Gbit/s | 5 GB/s | |||||
100 gigabit/s MII (CGMII, on-chip only) | 1 | 100.0 Gbit/s | 12.5 GB/s | 2008 | ||||
100G AUI (CAUI-10) | 1 | 10 | 64b/66b | 10.3125 Gbit/s | 100.0 Gbit/s | 12.5 GB/s | ||
100G AUI (CAUI-4) | 1 | 4 | 64b/66b | 25.78125 Gbit/s | 100.0 Gbit/s | 12.5 GB/s |
Technology | Rate | Year | |
---|---|---|---|
10 gigabit/s 16-bit interface (XSBI; 16 lanes) | 0.995 Gbit/s | 0.124 GB/s |
The table below shows values forPC memory module types.These modules usually combine multiple chips on onecircuit board.SIMM modules connect to the computer via an 8-bit- or 32-bit-wide interface. RIMM modules used byRDRAM are 16-bit- or 32-bit-wide.[50]DIMM modules connect to the computer via a 64-bit-wide interface.Some other computer architectures use different modules with a different bus width.
In a single-channel configuration, only one module at a time can transfer information to the CPU.In multi-channel configurations, multiple modules can transfer information to the CPU at the same time, in parallel.FPM,EDO,SDR, andRDRAM memory was not commonly installed in a dual-channel configuration.DDR andDDR2 memory is usually installed in single- or dual-channel configuration.DDR3 memory is installed in single-, dual-, tri-, and quad-channel configurations.Bit rates of multi-channel configurations are the product of the module bit-rate (given below) and the number of channels.
Module type | Chip type | Internal clock[a] | Bus clock | Bus speed[b] | Transfer rate | |
---|---|---|---|---|---|---|
FPM DRAM | 70 ns tRAC | 22 MHz | 22 MHz | 0.0177 GT/s | 1.416 Gbit/s | 177 MB/s |
EDO DRAM (486 CPU) | 60 ns tRAC | 33 MHz | 33 MHz | 0.0266 GT/s | 2.128 Gbit/s | 266 MB/s |
EDO DRAM (Pentium CPU) | 60 ns tRAC | 66 MHz | 66 MHz | 0.066 GT/s | 4.264 Gbit/s | 533 MB/s |
PC-66 SDR SDRAM | 10/15 ns | 66 MHz | 66 MHz | 0.066 GT/s | 4.264 Gbit/s | 533 MB/s |
PC-100 SDR SDRAM | 8 ns | 100 MHz | 100 MHz | 0.100 GT/s | 6.4 Gbit/s | 800 MB/s |
PC-133 SDR SDRAM | 7/7.5 ns | 133 MHz | 133 MHz | 0.133 GT/s | 8.528 Gbit/s | 1.066 GB/s |
RIMM-1200 RDRAM | PC600 | 75 MHz | 300 MHz | 0.600 GT/s | 9.6 Gbit/s | 1.2 GB/s |
RIMM-1400 RDRAM | PC700 | 87.5 MHz | 350 MHz | 0.700 GT/s | 11.2 Gbit/s | 1.4 GB/s |
RIMM-1600 RDRAM | PC800 | 100 MHz | 400 MHz | 0.800 GT/s | 12.8 Gbit/s | 1.6 GB/s |
PC-1600 DDR SDRAM | DDR-200 | 100 MHz | 100 MHz | 0.200 GT/s | 12.8 Gbit/s | 1.6 GB/s |
RIMM-2100 RDRAM | PC1066 | 133 MHz | 533 MHz | 1.066 GT/s | 17.034 Gbit/s | 2.133 GB/s |
PC-2100 DDR SDRAM | DDR-266 | 133 MHz | 133 MHz | 0.266 GT/s | 17.034 Gbit/s | 2.133 GB/s |
RIMM-2400 RDRAM | PC1200 | 150 MHz | 600 MHz | 1.2 GT/s | 19.2 Gbit/s | 2.4 GB/s |
PC-2700 DDR SDRAM | DDR-333 | 166 MHz | 166 MHz | 0.333 GT/s | 21.336 Gbit/s | 2.667 GB/s |
PC-3200 DDR SDRAM | DDR-400 | 200 MHz | 200 MHz | 0.400 GT/s | 25.6 Gbit/s | 3.2 GB/s |
PC2-3200 DDR2 SDRAM | DDR2-400 | 100 MHz | 200 MHz | 0.400 GT/s | 25.6 Gbit/s | 3.2 GB/s |
PC-3500 DDR SDRAM | DDR-433 | 216 MHz | 216 MHz | 0.433 GT/s | 27.728 Gbit/s | 3.466 GB/s |
PC-3700 DDR SDRAM | DDR-466 | 233 MHz | 233 MHz | 0.466 GT/s | 29.864 Gbit/s | 3.733 GB/s |
PC-4000 DDR SDRAM | DDR-500 | 250 MHz | 250 MHz | 0.500 GT/s | 32 Gbit/s | 4 GB/s |
PC-4200 DDR SDRAM | DDR-533 | 266 MHz | 266 MHz | 0.533 GT/s | 34.128 Gbit/s | 4.266 GB/s |
PC2-4200 DDR2 SDRAM | DDR2-533 | 133 MHz | 266 MHz | 0.533 GT/s | 34.128 Gbit/s | 4.266 GB/s |
PC-4400 DDR SDRAM | DDR-550 | 275 MHz | 275 MHz | 0.550 GT/s | 35.2 Gbit/s | 4.4 GB/s |
PC-4800 DDR SDRAM | DDR-600 | 300 MHz | 300 MHz | 0.600 GT/s | 38.4 Gbit/s | 4.8 GB/s |
PC2-5300 DDR2 SDRAM | DDR2-667 | 166 MHz | 333 MHz | 0.667 GT/s | 42.664 Gbit/s | 5.333 GB/s |
PC2-6000 DDR2 SDRAM | DDR2-750 | 188 MHz | 375 MHz | 0.750 GT/s | 48 Gbit/s | 6 GB/s |
PC2-6400 DDR2 SDRAM | DDR2-800 | 200 MHz | 400 MHz | 0.800 GT/s | 51.2 Gbit/s | 6.4 GB/s |
PC3-6400 DDR3 SDRAM | DDR3-800 | 100 MHz | 400 MHz | 0.800 GT/s | 51.2 Gbit/s | 6.4 GB/s |
PC2-7200 DDR2 SDRAM | DDR2-900 | 225 MHz | 450 MHz | 0.900 GT/s | 57.6 Gbit/s | 7.2 GB/s |
PC2-8000 DDR2 SDRAM | DDR2-1000 | 250 MHz | 500 MHz | 1 GT/s | 64 Gbit/s | 8 GB/s |
PC2-8500 DDR2 SDRAM | DDR2-1066 | 266 MHz | 533 MHz | 1.066 GT/s | 68 Gbit/s | 8.5 GB/s |
PC3-8500 DDR3 SDRAM | DDR3-1066 | 133 MHz | 533 MHz | 1.066 GT/s | 68 Gbit/s | 8.5 GB/s |
PC2-8800 DDR2 SDRAM | DDR2-1100 | 275 MHz | 550 MHz | 1.1 GT/s | 70.4 Gbit/s | 8.8 GB/s |
PC2-9200 DDR2 SDRAM | DDR2-1150 | 288 MHz | 575 MHz | 1.15 GT/s | 73.6 Gbit/s | 9.2 GB/s |
PC2-9600 DDR2 SDRAM | DDR2-1200 | 300 MHz | 600 MHz | 1.2 GT/s | 76.8 Gbit/s | 9.6 GB/s |
PC2-10000 DDR2 SDRAM | DDR2-1250 | 312 MHz | 625 MHz | 1.25 GT/s | 80 Gbit/s | 10 GB/s |
PC3-10600 DDR3 SDRAM | DDR3-1333 | 167 MHz | 667 MHz | 1.333 GT/s | 85.336 Gbit/s | 10.667 GB/s |
PC3-11000 DDR3 SDRAM | DDR3-1375 | 172 MHz | 688 MHz | 1.375 GT/s | 88 Gbit/s | 11 GB/s |
PC3-12800 DDR3 SDRAM | DDR3-1600 | 200 MHz | 800 MHz | 1.6 GT/s | 102.4 Gbit/s | 12.8 GB/s |
PC3-13000 DDR3 SDRAM | DDR3-1625 | 203 MHz | 813 MHz | 1.625 GT/s | 104 Gbit/s | 13 GB/s |
PC3-14400 DDR3 SDRAM | DDR3-1800 | 225 MHz | 900 MHz | 1.8 GT/s | 115.2 Gbit/s | 14.4 GB/s |
PC3-14900 DDR3 SDRAM | DDR3-1866 | 233 MHz | 933 MHz | 1.866 GT/s | 119.464 Gbit/s | 14.933 GB/s |
PC3-16000 DDR3 SDRAM | DDR3-2000 | 250 MHz | 1000 MHz | 2 GT/s | 128 Gbit/s | 16 GB/s |
PC3-17000 DDR3 SDRAM | DDR3-2133 | 267 MHz | 1067 MHz | 2.133 GT/s | 136.528 Gbit/s | 17.066 GB/s |
PC4-17000 DDR4 SDRAM | DDR4-2133 | 267 MHz | 1067 MHz | 2.133 GT/s | 136.5 Gbit/s | 17 GB/s |
PC3-17600 DDR3 SDRAM | DDR3-2200 | 275 MHz | 1100 MHz | 2.2 GT/s | 140.8 Gbit/s | 17.6 GB/s |
PC3-19200 DDR3 SDRAM | DDR3-2400 | 300 MHz | 1200 MHz | 2.4 GT/s | 153.6 Gbit/s | 19.2 GB/s |
PC4-19200 DDR4 SDRAM | DDR4-2400 | 300 MHz | 1200 MHz | 2.4 GT/s | 153.6 Gbit/s | 19.2 GB/s |
PC3-21300 DDR3 SDRAM | DDR3-2666 | 333 MHz | 1333 MHz | 2.666 GT/s | 170.5 Gbit/s | 21.3 GB/s |
PC4-21300 DDR4 SDRAM | DDR4-2666 | 333 MHz | 1333 MHz | 2.666 GT/s | 170.5 Gbit/s | 21.3 GB/s |
PC3-24000 DDR3 SDRAM | DDR3-3000 | 375 MHz | 1500 MHz | 3.0 GT/s | 192 Gbit/s | 24 GB/s |
PC4-24000 DDR4 SDRAM | DDR4-3000 | 375 MHz | 1500 MHz | 3.0 GT/s | 192 Gbit/s | 24 GB/s |
PC4-25600 DDR4 SDRAM | DDR4-3200 | 400 MHz | 1600 MHz | 3.2 GT/s | 204.8 Gbit/s | 25.6 GB/s |
PC5-41600 DDR5 SDRAM | DDR5-5200 | 650 MHz | 2600 MHz | 5.2 GT/s | 332.8 Gbit/s | 41.6 GB/s |
PC5-44800 DDR5 SDRAM | DDR5-5600 | 700 MHz | 2800 MHz | 5.6 GT/s | 358.4 Gbit/s | 44.8 GB/s |
PC5-51200 DDR5 SDRAM | DDR5-6400 | 800 MHz | 3200 MHz | 6.4 GT/s | 409.6 Gbit/s | 51.2 GB/s |
PC5-57600 DDR5 SDRAM | DDR5-7200 | 900 MHz | 3600 MHz | 7.2 GT/s | 460.8 Gbit/s | 57.6 GB/s |
PC5-64000 DDR5 SDRAM | DDR5-8000 | 1000 MHz | 4000 MHz | 8.0 GT/s | 512.0 Gbit/s | 64.0 GB/s |
PC5-70400 DDR5 SDRAM | DDR5-8800 | 1100 MHz | 4400 MHz | 8.8 GT/s | 563.2 Gbit/s | 70.4 GB/s |
a The clock rate at whichDRAM memory cells operate. Thememory latency is largely determined by this rate. Note that until the introduction ofDDR4 the internal clock rate saw relatively slow progress.DDR/DDR2/DDR3 memory uses 2n/4n/8n (respectively)prefetch buffer to provide higher throughput, while the internal memory speed remains similar to that of the previous generation.
b The memory speed or clock rate advertised by manufactures and suppliers usually refers to this rate (with 1 GT/s = 1 GHz). Note that modern types of memory useDDR bus with two transfers per clock.
Graphics processing units' RAM
editRAM memory modules are also utilised bygraphics processing units; however, memory modules for those differ somewhat from standard computer memory, particularly with lower power requirements, and are specialised to serve GPUs: for example,GDDR3 was fundamentally based onDDR2. Every graphics memory chip is directly connected to the GPU (point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip. For example, GDDR5 specifies either 16 or 32 lanes perdevice (chip), while GDDR5X specifies 64 lanes per chip. Over the years, bus widths rose from 64-bit to 512-bit and beyond: e.g.HBM is 1024 bits wide.[51]Because of this variability, graphics memory speeds are sometimes compared per pin. For direct comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots, corresponding to two chips for those devices with 32-bit widths.In 2012, high-end GPUs used 8 or even 12 chips with 32 lanes each, for a total memory bus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GT/s or more, such cards could reach 240 GB/s or more.
RAM frequencies used for a given chip technology vary greatly. Where single values are given below, they are examples from high-end cards.[52] Since many cards have more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards often have eight chips, each 32 bits wide, so the total bandwidth for such cards is four times the value given below.
Chip type | Module type | Memory clock | Transfers/s | Bandwidth | |
---|---|---|---|---|---|
DDR | 64 lanes | 350 MHz | 0.7 GT/s | 44.8 Gbit/s | 5.6 GB/s |
DDR2 | 64 lanes | 250 MHz | 1 GT/s | 64 Gbit/s | 8 GB/s |
GDDR3 | 64 lanes | 625 MHz | 2.5 GT/s | 159 Gbit/s | 19.9 GB/s |
GDDR4 | 64 lanes | 275 MHz | 2.2 GT/s | 140.8 Gbit/s | 17.6 GB/s |
GDDR5[53] | 64 lanes | 625–1125 MHz | 5–9 GT/s | 320–576 Gbit/s | 40–72 GB/s |
GDDR5X[54] | 64 lanes | 625–875 MHz | 10–12 GT/s | 640–768 Gbit/s | 80–96 GB/s |
GDDR6 | 64 lanes | 875–1125 MHz | 14–18 GT/s | 896–1152 Gbit/s | 112–144 GB/s |
GDDR6X[55] | 64 lanes | 594–656 MHz | 19–21 GT/s | 1216–1344 Gbit/s | 152–168 GB/s |
HBM[56] | 1024 lanes (8 channels @ 128 lanes ea) | 500 MHz | 1 GT/s | 1024 Gbit/s | 128 GB/s |
HBM2[56] | 1024 lanes (8 channels @ 128 lanes ea) | 1000 MHz | 2 GT/s | 2048 Gbit/s | 256 GB/s |
HBM2e[57] | 1024 lanes (8 channels @ 128 lanes ea) | 1800 MHz | 3.6 GT/s | 3686.4 Gbit/s | 460.8 GB/s |
HBM3[57][58] | 1024 lanes (16 channels @ 64 lanes ea) | 3200 MHz | 6.4 GT/s | 6553.6 Gbit/s | 819.2 GB/s |
HBM3E[57][58] | 1024 lanes (16 channels @ 64 lanes ea) | up to4900 MHz | up to9.8 GT/s | up to10035 Gbit/s | up to1.25 TB/s |
HMC | 128 lanes (8 links @ 16 lanes ea) | (internal) | 10 GT/s | 2560 Gbit/s | 320 GB/s |
HMC2 | 64 lanes (4 links @ 16 lanes ea) | (internal) | 30 GT/s | 3840 Gbit/s | 480 GB/s |
Digital audio
editDevice | Rate | |
---|---|---|
CD Audio (16-bit PCM) | 1.411 Mbit/s | 176.4 kB/s |
I²S | 2.250 Mbit/s @ 24bit/48 kHz | 0.281 MB/s |
AES/EBU | 2.625 Mbit/s @ 24-bit/48 kHz | 0.328 MB/s |
S/PDIF fs 48kHz | 3.072 Mbit/s | 0.384 MB/s |
ADAT Lightpipe (Type I) | 9.216 Mbit/s | 1.152 MB/s |
AC'97 | 12.288 Mbit/s | 1.536 MB/s |
HDMI | 36.864 Mbit/s | 4.608 MB/s |
DisplayPort | 36.864 Mbit/s | 4.608 MB/s |
Intel High Definition Audio rev. 1.0[59] | 48 Mbit/s outbound;24 Mbit/s inbound | 6 MB/s outbound; 3 MB/s inbound |
MADI | 100 Mbit/s | 12.5 MB/s |
Digital video interconnects
editData rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band and reverse signaling channels are not included.
Device | Rate | Year | |
---|---|---|---|
HD-SDI (SMPTE 292M) | 1.485 Gbit/s | 0.186 GB/s | |
Camera Link Base (single) 24-bit 85 MHz | 2.040 Gbit/s | 0.255 GB/s | |
LVDS Display Interface[60] | 2.80 Gbit/s | 0.35 GB/s | |
3G-SDI (SMPTE 424M) | 2.97 Gbit/s | 0.371 GB/s | 2006 |
Single link DVI | 4.95 Gbit/s | 0.619 GB/s[a] | 1999 |
HDMI 1.0[61] | 4.95 Gbit/s | 0.619 GB/s[a] | 2002 |
Camera Link full (dual) 64-bit 85 MHz | 5.44 Gbit/s | 0.680 GB/s | |
6G-SDI (SMPTE 2081) | 5.94 Gbit/s | 0.75 GB/s | 2015 |
DisplayPort 1.0 (4-lane Reduced Bit Rate)[62] | 6.48 Gbit/s | 0.810 GB/s[a] | 2006 |
Dual link DVI | 9.90 Gbit/s | 1.238 GB/s[a] | 1999 |
Thunderbolt | 2 ×10 Gbit/s | 2 ×1.25 GB/s | 2011 |
HDMI 1.3[63] | 10.2 Gbit/s | 1.275 GB/s[a] | 2006 |
Dual High-SpeedLVDS Display Interface | 10.5 Gbit/s | 1.312 GB/s | |
DisplayPort 1.0 (4-lane High Bit Rate)[62] | 10.8 Gbit/s | 1.35 GB/s[a] | 2006 |
12G-SDI (SMPTE 2082) | 11.88 Gbit/s | 1.5 GB/s | 2015 |
HDMI 2.0[64] | 18.0 Gbit/s | 2.25 GB/s[a] | 2013 |
Thunderbolt 2 | 20 Gbit/s | 2.5 GB/s | 2013 |
DisplayPort 1.2 (4-lane High Bit Rate 2)[62] | 21.6 Gbit/s | 2.7 GB/s[a] | 2009 |
DisplayPort 1.3 (4-lane High Bit Rate 3) | 32.4 Gbit/s | 4.05 GB/s[a] | 2014 (2016) |
DisplayPort 1.4/1.4a | 32.4 Gbit/s | 4.05 GB/s | 2016 (2018) |
superMHL | 36 Gbit/s | 4.5 GB/s | 2015 |
Thunderbolt 3 | 40 Gbit/s | 5 GB/s | 2015 |
HDMI 2.1[65] | 48 Gbit/s | 6 GB/s[b] | 2017 |
DisplayPort 2.0/2.1 (4-lane)[66] | 80 Gbit/s | 10 GB/s[c] | 2019 (2022) |
SMPTE 2110 over 100Gigabit Ethernet | 100 Gbit/s | 12.5 GB/s | 2017 |
HDMI 2.2[67] | 96 Gbit/s | 12 GB/s[b] | 2025 |
a Uses8b/10b encoding (20% coding overhead)b Uses 16b/18b encoding (11% overhead)c Uses 128b/132b encoding (3% overhead)
See also
editNotes
edit- ^Morse can transport 26 alphabetic, 10 numeric and one interword gap plaintext symbols. Transmitting 37 different symbols requires 5.21 bits of information (25.21 = 37). A skilled operator encoding the benchmark "PARIS" plus an interword gap (equal to 31.26 bits) at 40 wpm is operating at an equivalence of20.84 bit/s.
- ^WPM, or words per minute, is the number of times the word "PARIS" is transferred per minute. Strictly speaking the code is quinary, accounting inter-element, inter-letter, and inter-word gaps, yielding 50 binary elements (bits) per one word. Counting characters, including inter-word gaps, gives six characters per word or 240 characters per minute, and finally four characters per second.
- ^abcdefghijAll modems are wrongly assumed to be in serial operation with 1 start bit, 8 data bits, no parity, and 1 stop bit (2 stop bits for 110-baud modems). Therefore, currently modems are wrongly calculated with transmission of 10 bits per 8-bit byte (11 bits for 110-baud modems). Although the serial port is nearly always used to connect a modem and has equivalent data rates, the protocols, modulations and error correction differ completely.
- ^abc56K modems: V.90 and V.92 have just 5% overhead for the protocol signalling. The maximum capacity can only be achieved when the upstream (service provider) end of the connection is digital, i.e. a DS0 channel.
- ^Effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of multiple channels. Abasic rate interface (BRI) provides two "B" channels and one "D" channel. Each B channel provides64 kbit/s bandwidth and the "D" channel carries signaling (call setup) information. B channels can be bonded to provide a128 kbit/s data rate. Primary rate interfaces (PRI) vary depending on whether the region uses E1 (Europe, world) or T1 (North America) bearers. In E1 regions, the PRI carries 30 B-channels and one D-channel; in T1 regions the PRI carries 23 B-channels and one D-channel. The D-channel has different bandwidth on the two interfaces.
- ^Most operators only support up to9600 bit/s
- ^SDSL is available in various speeds.
- ^ADSL connections will vary in throughput from64 kbit/s to several Mbit/s depending on configuration. Most are commonly below2 Mbit/s. Some ADSL and SDSL connections have a higherdigital bandwidth than T1 but their rate is not guaranteed, and will drop when the system gets overloaded, whereas the T1 type connections are usually guaranteed and have no contention ratios.
- ^Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem, satellite and hub. One-way satellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land-based connections such as 56K modems and ISDN.
- ^FireWire natively supports TCP/IP, and is often used at an alternative to Ethernet when connecting 2 nodes.[22]
- ^Data rate comparison between FW and Giganet shows that FW's lower overhead has nearly the same throughput as Giganet.[23]
- ^abcdNote that PCI Express 1.0/2.0 lanes use an8b/10b encoding scheme.
- ^abcPCIe 2.0 effectively doubles the bus standard's bandwidth from 2.5 GT/s to 5 GT/s
- ^abcdefPCIe 3.0 increases the bandwidth from 5 GT/s to 8 GT/s and switches to 128b-130b encoding
- ^SCSI-1, SCSI-2 and SCSI-3 are signaling protocols and do not explicitly refer to a specific rate. Narrow SCSI exists using SCSI-1 and SCSI-2. Higher rates use SCSI-2 or later.
- ^Minimum overhead is 38 byte L1/L2, 14 byte AoE per 1024 byte user data
- ^Minimum overhead is 38 byte L1/L2, 20 byte IP, 20 byte TCP per 1460 byte user data
- ^abcdefFibre Channel 1GFC, 2GFC, 4GFC use an8b/10b encoding scheme. Fibre Channel 10GFC, which uses a64B/66B encoding scheme, is not compatible with 1GFC, 2GFC and 4GFC, and is used only to interconnect switches.
- ^abMinimum overhead is 38 byte L1/L2, 14 byte AoE per 8192 byte user data
- ^abcMinimum overhead is 38 byte L1/L2, 20 byte IP, 20 byte TCP per 8960 byte user data
- ^abcdefSATA and SAS use an8b/10b encoding scheme.
- ^abminimum overhead is 38 byte L1/L2, 36 byte FC per 2048 byte user data
- ^Proprietary serial version ofIEEE-488 byCommodore International
References
edit- ^Jindal, R. P. (2009)."From millibits to terabits per second and beyond - over 60 years of innovation".2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6.doi:10.1109/EDST.2009.5166093.ISBN 978-1-4244-3831-0.S2CID 25112828.
starting with smoke signals sent by primitive civilizations at millibits/s
- ^"Human Speech May Have a Universal Transmission Rate: 39 Bits Per Second".science.org. 2019-09-04. Retrieved2022-06-24.
- ^John Lowe (September 2012),Enhanced WWVB Broadcast Format(PDF)
- ^WWVB Radio Controlled Clocks: Recommended Practices for Manufacturers and Consumers (2009 Edition)(PDF), archived fromthe original(PDF) on 2016-12-21
- ^TTY uses aBaudot code, notASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per character sent).
- ^"ITU-T Recommendation database".
- ^"A Brief History of Captioned Television".www.ncicap.org. Archived fromthe original on 19 July 2011.
- ^abModem Types and Timeline, Daxal Communications, 2003-12-16, archived fromthe original on 2008-10-08, retrieved2009-04-16
- ^abcdefg"ITU-T Recommendations: V Series: Data communication over the telephone network". ITU.
- ^Massey, David (2006-07-04),"Timeline of Telecommunications",Telephone Tribute, retrieved2009-04-16
- ^Adam.com.au
- ^"Recommendation G.991.1 (10/98)". ITU.
- ^abDOCSIS 1.0Archived 2006-06-13 at theWayback Machine includes technology which first became available around 1995–1996, and has since become very widely deployed.DOCSIS 1.1Archived 2006-06-13 at theWayback Machine introduces some security improvements andquality of service (QoS).
- ^abDOCSIS 2.0Archived 2009-09-04 at theWayback Machine specifications provide increased upstream throughput for symmetric services.
- ^"G.983.2". ITU.
- ^abDOCSIS 3.0Archived 2006-06-19 at theWayback Machine includes support forchannel bonding andIPv6.
- ^"G.984.4 : Gigabit-capable passive optical networks (G-PON)". ITU.
- ^DOCSIS 3.1Archived 2015-03-13 at theWayback Machine is currently in development by the Cablelabs Consortium
- ^"G.987 : 10-Gigabit-capable passive optical network (XG-PON) systems". ITU.
- ^"G.989 : 40-Gigabit-capable passive optical networks (NG-PON2)". ITU.
- ^ab"MoCA 1.1 improves throughput" over coaxial cable to175 Mbit/s versus the100 Mbit/s provided by the MoCA 1.0 specification.
- ^Tweaktown.com
- ^Unibrain.comArchived 2008-02-07 at theWayback Machine
- ^abcdefghijklmInfiniBand SDR, DDR and QDR use an8b/10b encoding scheme.
- ^abcdefghijklmnopqrstuvwxyzaaabInfiniBand FDR-10, FDR and EDR use a64b/66b encoding scheme.
- ^abcdLee, Bill."Chair of marketing working group".IBTA Blog. IBTA. Archived fromthe original on 2018-06-25. Retrieved25 June 2018.
- ^Mac History
- ^VAW: Apple IIgs SpecsArchived 2011-01-10 at theWayback Machine
- ^"After 35 years of I2C, I3C Improves Capability and Performance | Sensors and MEMS".eecatalog.com. Retrieved2019-06-26.
- ^TheZorro II bus use 4 clocks per 16-Bit of data transferred. See theZorro III technical specificationArchived 2012-07-16 at theWayback Machine for more information.
- ^Japan wikipedia article, Bus used in early NEC PC-9800 series and compatible systems
- ^STD 32 Bus Specification and Designer's Guide
- ^Japan wikipedia article, Bus used in later NEC PC-9800 series and compatible systems
- ^RISC System/6000 POWERstation/POWERserver 580
- ^Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7 (APbus used in Sony NeWS and NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI)
- ^Japan wikipedia article, Bus used in NEC PC-9821 series
- ^Dave Haynie, designer of the Zorro III bus, claims inthis posting that the theoretical max of the Zorro III bus can be derived by the timing information given inchapter 5 of theZorro III technical specificationArchived 2012-07-16 at theWayback Machine.
- ^Dave Haynie, designer of the Zorro III bus, states inthis posting that Zorro III is anasynchronous bus and therefore does not have a classical MHz rating. A maximum theoretical MHz value may be derived by examining timing constraints detailed in theZorro III technical specificationArchived 2012-07-16 at theWayback Machine, which should yield about 37.5 MHz. No existing implementation performs to this level.
- ^Dave Haynie, designer of the Zorro III bus, claims inthis posting that Zorro III has a max burst rate of 150 MB/s.
- ^Born, Eric (8 June 2017)."PCIe 4.0 specification finally out with 16 GT/s on tap". Tech Report. Retrieved21 February 2018.
- ^Smith, Ryan."PCI-SIG Finalizes PCIe 5.0 Specification: x16 Slots to Reach 64GB/sec".www.anandtech.com. Retrieved2019-06-26.
- ^"PCI Express 6.0 Specification Finalized: X16 Slots to Reach 128GBps".
- ^Intel LPC Interface Specification 1.1
- ^"CCOM - Diskettenlaufwerke und Festplatten".
- ^abcFireWire (IEEE 1394b) uses an8b/10b encoding scheme.
- ^Dent, Steve (26 July 2017)."USB 3.2 doubles your connection speeds with the same port". Engadget. Retrieved26 July 2017.
- ^"VITA - Online store product".www.vita.com. Retrieved2022-03-23.
- ^Shilov, Anton."USB4 Specification Announced: Adopting Thunderbolt 3 Protocol for 40 Gbps USB".www.anandtech.com. Retrieved2019-06-26.
- ^"USB Promoter Group Announces USB4® Version 2.0".www.businesswire.com (Press release). September 2022. Retrieved2022-09-01.
- ^"RDRAM Memory Architecture".
- ^Comparison of AMD graphics processing units
- ^Comparison of Nvidia graphics processing units
- ^"GRAPHICS DOUBLE DATA RATE (GDDR5) SGRAM STANDARD JESD212C". JEDEC. 2016-02-01. Retrieved2016-08-10.
- ^"GRAPHICS DOUBLE DATA RATE (GDDR5X) SGRAM STANDARD JESD232". JEDEC. 2015-11-01. Retrieved2016-08-10.
- ^"Doubling I/O Performance with PAM4 - Micron Innovates GDDR6X to Accelerate Graphics Memory".Micron. Retrieved11 September 2020.
- ^abShilov, Anton (20 January 2016)."JEDEC Publishes HBM2 Specification". Anandtech. Retrieved16 May 2017.
- ^abcHarding, Scharon (15 April 2021)."What Are HBM, HBM2 and HBM2E? A Basic Definition". Tom's Hardware. Retrieved4 May 2022.
- ^abPrickett Morgan, Timothy (6 April 2022)."The HBM3 roadmap is just getting started". TheNextPlatform. Retrieved4 May 2022.
- ^High Definition Audio Specification, Revision 1.0a, 2010
- ^Videsignline.com, Panel display interfaces and bandwidth: From TTL, LVDS, TDMS to DisplayPort
- ^"HDMI 1.3. What you need to know.htm".Octavainc.com. Archived fromthe original on 2008-12-05. Retrieved2008-10-20.
- ^abcDisplayport Technical OverviewArchived 2011-07-26 at theWayback Machine, May 2010
- ^"HDMI.org". Archived fromthe original on 2018-02-22. Retrieved2008-10-20.
- ^"HDMI.org". Archived fromthe original on 2019-01-05. Retrieved2013-11-07.
- ^"HDMI.org". Archived fromthe original on 2017-01-06. Retrieved2017-01-10.
- ^"VESA Releases DisplayPort 2.1 Specification". 17 October 2022. Archived fromthe original on 2022-11-23. Retrieved2023-01-19.
- ^"hdmiforum.org". Archived fromthe original on 2025-06-26. Retrieved2025-07-02.
External links
edit- Interconnection Speeds Compared
- LTE Categories 1
- LTE Categories 2
- Need for Speed: Theoretical Bandwidth Comparison – A graph illustrating digital bandwidths. Digital Silence, 2004 (archived).