Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of iron

From Wikipedia, the free encyclopedia
(Redirected fromIron-60)

Isotopes ofiron (26Fe)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
54Fe5.85%stable
55Fesynth2.7562 yε55Mn
56Fe91.8%stable
57Fe2.12%stable
58Fe0.28%stable
59Fesynth44.50 dβ59Co
60Fetrace2.62×106 yβ60Co
Standard atomic weightAr°(Fe)

Naturaliron (26Fe) consists of four stableisotopes: 5.85%54Fe, 91.75%56Fe, 2.12%57Fe and 0.28%58Fe. There are 28 known radioisotopes and 8nuclear isomers, the most stable of which are60Fe (half-life 2.62 million years) and55Fe (half-life 2.7562 years).

Much of the past work on measuring the isotopic composition of iron has centered on determining60Fe variations due to processes accompanyingnucleosynthesis (e.g.,meteorite studies) and ore formation. In the last decade however, advances inmass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of thestable isotopes of iron. Much of this work has been driven by theEarth andplanetary science communities, though applications to biological and industrial systems are beginning to emerge.[4]

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
45Fe261945.01547(30)#2.5(2) ms2p (70%)43Cr3/2+#
β+, p (18.9%)44Cr
β+, 2p (7.8%)43V
β+ (3.3%)45Mn
46Fe262046.00130(32)#13.0(20) msβ+, p (78.7%)45Cr0+
β+ (21.3%)46Mn
β+, 2p?44V
47Fe262146.99235(54)#21.9(2) msβ+, p (88.4%)46Cr7/2−#
β+ (11.6%)47Mn
48Fe262247.980667(99)45.3(6) msβ+ (84.7%)48Mn0+
β+, p (15.3%)47Cr
49Fe262348.973429(26)64.7(3) msβ+, p (56.7%)48Cr(7/2−)
β+ (43.3%)49Mn
50Fe262449.9629880(90)152.0(6) msβ+50Mn0+
β+, p?49Cr
51Fe262550.9568551(15)305.4(23) msβ+51Mn5/2−
52Fe262651.94811336(19)8.275(8) hβ+52Mn0+
52mFe6960.7(3) keV45.9(6) sβ+ (99.98%)52Mn12+
IT (0.021%)52Fe
53Fe262752.9453056(18)8.51(2) minβ+53Mn7/2−
53mFe3040.4(3) keV2.54(2) minIT53Fe19/2−
54Fe262853.93960819(37)Observationally Stable[n 8]0+0.05845(105)
54mFe6527.1(11) keV364(7) nsIT54Fe10+
55Fe262954.93829116(33)2.7562(4) yEC55Mn3/2−
56Fe[n 9]263055.93493554(29)Stable0+0.91754(106)
57Fe263156.93539195(29)Stable1/2−0.02119(29)
58Fe263257.93327358(34)Stable0+0.00282(12)
59Fe263358.93487349(35)44.500(12) dβ59Co3/2−
60Fe263459.9340702(37)2.62(4)×106 yβ60Co0+trace
61Fe263560.9367462(28)5.98(6) minβ61Co(3/2−)
61mFe861.67(11) keV238(5) nsIT61Fe9/2+
62Fe263661.9367918(30)68(2) sβ62Co0+
63Fe263762.9402727(46)6.1(6) sβ63Co(5/2−)
64Fe263863.9409878(54)2.0(2) sβ64Co0+
65Fe263964.9450153(55)805(10) msβ65Co(1/2−)
β,n?64Co
65m1Fe393.7(2) keV1.12(15) sβ?65Co(9/2+)
65m2Fe397.6(2) keV418(12) nsIT65Fe(5/2+)
66Fe264065.9462500(44)467(29) msβ66Co0+
β, n?65Co
67Fe264166.9509300(41)394(9) msβ67Co(1/2-)
β, n?66Co
67m1Fe403(9) keV64(17) μsIT67Fe(5/2+,7/2+)
67m2Fe450(100)# keV75(21) μsIT67Fe(9/2+)
68Fe264267.95288(21)#188(4) msβ68Co0+
β, n?67Co
69Fe264368.95792(22)#162(7) msβ69Co1/2−#
β, n?68Co
β, 2n?67Co
70Fe264469.96040(32)#61.4(7) msβ70Co0+
β, n?69Co
71Fe264570.96572(43)#34.3(26) msβ71Co7/2+#
β, n?70Co
β, 2n?69Co
72Fe264671.96860(54)#17.0(10) msβ72Co0+
β, n?71Co
β, 2n?70Co
73Fe264772.97425(54)#12.9(16) msβ73Co7/2+#
β, n?72Co
β, 2n?71Co
74Fe264873.97782(54)#5(5) msβ74Co0+
β, n?73Co
β, 2n?72Co
75Fe264974.98422(64)#9# ms
[>620 ns]
β?75Co9/2+#
β, n?74Co
β, 2n?73Co
76Fe265075.98863(64)#3# ms
[>410 ns]
β?76Co0+
This table header & footer:
  1. ^mFe – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^Believed to decay by β+β+ to54Cr with a half-life of over 4.4×1020a[6]
  9. ^Lowest mass per nucleon of all nuclides; End product of stellarnucleosynthesis

Iron-56

[edit]
Main article:Iron-56

56Fe is the most abundant isotope of iron. It is also the isotope with the lowest mass per nucleon, 930.412 MeV/c2, though not the isotope with the highestnuclear binding energy per nucleon, which isnickel-62.[7] However, because of the details of how nucleosynthesis works,56Fe is a more common endpoint of fusion insidesupernovae, where it is mostly produced as56Ni, which subsequently decays to56Co and then iron. Thus,56Fe is more common in the universe, relative to otherheavy elements, including62Ni,58Fe, and60Ni, all of which have a comparably high binding energy.

Iron-57

[edit]

57Fe is widely used inMössbauer spectroscopy and the relatednuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition.[8] The transition was famously used to make the first definitive measurement ofgravitational redshift, in the 1960Pound–Rebka experiment.[9]

Iron-60

[edit]

Iron-60 has a half-life of 2.62 million years,[10] but was thought until 2009 to have a half-life of 1.5 million years. It undergoesbeta decay to60Co, which then decays with the much shorter half-life of about 5 years to stable60Ni.

In phases of the meteoritesSemarkona andChervony Kut, a correlation between the excess concentration of60Ni, thegranddaughter isotope of60Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of60Fe at the time of formation of the Solar System.[11] Depending on its original abundance, theenergy from the decay of60Fe may have been significant, along with that of26Al, to the remelting anddifferentiation ofasteroids andplanetesimals after their formation. These nickel abundances in extraterrestrial materials may also provide further insight into the origin of theSolar System and its early history.

Live (interstellar) iron-60 was first identified in deep sea sediments in 1999.[12] These are deep seaferromanganese crusts, which are constantly growing, aggregating iron,manganese, and other elements.[13] Iron-60 has been found in fossilized bacteria in sea floor sediments.[14][15] In 2019, researchers found60Fe inAntarctica.[16] Iron-60 shows two peaks in deep sea sediments, the first 1.7–3.2 million years ago and the second 6.5–8.7 million years ago. The peaks are relate to the passage of the Solar System through theLocal Bubble and likely theOrion–Eridanus Superbubble. Thesesuperbubbles were created by multiplesupernovae.[17] Traces of iron-60 have also been found in lunar samples.

The distance to the supernova of origin can be estimated by relating the amount of iron-60 intercepted as Earth passes through the expanding supernova ejecta. Assuming that the material ejected in a supernova expands uniformly out from its origin as a sphere with surface area 4πr2. The fraction of the material intercepted by the Earth is dependent on its cross-sectional area (πR 2
Earth
 
) as it passes through the expanding debris:

MFraction intercepted =πREarth 24πr2Mej{\displaystyle M_{\text{Fraction intercepted }}={\frac {\pi R_{\text{Earth }}^{2}}{4\pi r^{2}}}M_{ej}}

whereMej is the mass of ejected material. Assuming the intercepted material is distributed uniformly across the surface of the Earth (4πR 2
Earth
 
), the mass surface density (Σej) of the supernova ejecta on Earth is:

Σej=MFraction intercepted Asurface,Earth =Mej16πr2{\displaystyle \Sigma _{ej}={\frac {M_{\text{Fraction intercepted }}}{A_{\text{surface,Earth }}}}={\frac {M_{ej}}{16\pi r^{2}}}}

The number of60Fe atoms per unit area found on Earth can be estimated if the typical amount of60Fe ejected from a supernova is known. This can be done by dividing the surface mass density (Σej) by the atomic mass of60Fe.

N60=(Mej,60/m6016πr2){\displaystyle N_{60}=\left({\frac {M_{ej,60}/m_{60}}{16\pi r^{2}}}\right)}

The equation forN60 can be rearranged to find the distance to the supernova.

r=Mej,6016πm60N60{\displaystyle r={\sqrt {\frac {M_{ej,60}}{16\pi m_{60}N_{60}}}}}

An example calculation for the distance to the supernova point of origin is given below. This calculation uses speculative values for terrestrial60Fe atom surface density (N60 ≈ 4 × 1011 atoms/m2) and a rough estimate of the mass of60Fe ejected by a supernova (10×10−5 M).

r=105M16π(60mp)N60r=3×1018m=100pc{\displaystyle {\begin{aligned}r&={\sqrt {\frac {10^{-5}M_{\odot }}{16\pi \left(60m_{p}\right)N_{60}}}}\\r&=3\times 10^{18}m=100pc\end{aligned}}}

More sophisticated analyses have been reported that take into consideration theflux and deposition of60Fe as well as possible interfering background sources.[18]

Cobalt-60, the decay product of iron-60, emits 1.173 MeV and 1.332 MeV gamma rays as it decays. These lines have long been important targets forgamma-ray astronomy, and have been detected by the gamma-ray observatoryINTEGRAL. The signal traces theGalactic plane, showing that60Fe synthesis is ongoing in our galaxy, and probingelement production in massive stars.[19][20]

See also

[edit]

Daughter products other than iron

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Iron".CIAAW. 1993.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^N. Dauphas; O. Rouxel (2006). "Mass spectrometry and natural variations of iron isotopes".Mass Spectrometry Reviews.25 (4):515–550.Bibcode:2006MSRv...25..515D.doi:10.1002/mas.20078.PMID 16463281.
  5. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  6. ^Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998). "New results on the double β decay of iron".Physical Review C.58 (4):2566–2567.Bibcode:1998PhRvC..58.2566B.doi:10.1103/PhysRevC.58.2566.
  7. ^Fewell, M. P. (1995)."The atomic nuclide with the highest mean binding energy".American Journal of Physics.63 (7): 653.Bibcode:1995AmJPh..63..653F.doi:10.1119/1.17828.
  8. ^R. Nave."Mossbauer Effect in Iron-57".HyperPhysics. Georgia State University. Retrieved2009-10-13.
  9. ^Pound, R. V.; Rebka Jr. G. A. (April 1, 1960)."Apparent weight of photons".Physical Review Letters.4 (7):337–341.Bibcode:1960PhRvL...4..337P.doi:10.1103/PhysRevLett.4.337.
  10. ^Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009)."New Measurement of the60Fe Half-Life".Physical Review Letters.103 (7) 72502.Bibcode:2009PhRvL.103g2502R.doi:10.1103/PhysRevLett.103.072502.PMID 19792637.
  11. ^Mostefaoui, S.; Lugmair, G.W.; Hoppe, P.; El Goresy, A. (2004). "Evidence for live 60Fe in meteorites".New Astronomy Reviews.48 (1–4):155–59.Bibcode:2004NewAR..48..155M.doi:10.1016/j.newar.2003.11.022.
  12. ^Knie, K.; Korschinek, G.; Faestermann, T.; Wallner, C.; Scholten, J.; Hillebrandt, W. (1999-07-01)."Indication for Supernova Produced 60Fe Activity on Earth".Physical Review Letters.83 (1):18–21.Bibcode:1999PhRvL..83...18K.doi:10.1103/PhysRevLett.83.18.ISSN 0031-9007.
  13. ^Wallner, A.; Froehlich, M. B.; Hotchkis, M. A. C.; Kinoshita, N.; Paul, M.; Martschini, M.; Pavetich, S.; Tims, S. G.; Kivel, N.; Schumann, D.; Honda, M.; Matsuzaki, H.; Yamagata, T. (2021-05-01)."60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae".Science.372 (6543):742–745.Bibcode:2021Sci...372..742W.doi:10.1126/science.aax3972.ISSN 0036-8075.PMID 33986180.
  14. ^Smith, Belinda (August 9, 2016)."Ancient bacteria store signs of supernova smattering".Cosmos.
  15. ^Ludwig, Peter; et al. (August 16, 2016)."Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record".PNAS.113 (33):9232–9237.arXiv:1710.09573.Bibcode:2016PNAS..113.9232L.doi:10.1073/pnas.1601040113.PMC 4995991.PMID 27503888.
  16. ^Koll, Dominik; et al. (2019). "Interstellar60Fe in Antarctica".Physical Review Letters.123 (7) 072701.Bibcode:2019PhRvL.123g2701K.doi:10.1103/PhysRevLett.123.072701.hdl:1885/298253.PMID 31491090.S2CID 201868513.
  17. ^Schulreich, M. M.; Feige, J.; Breitschwerdt, D. (2023-12-01)."Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. II. Advanced modelling of interstellar 26Al, 53Mn, 60Fe, and 244Pu influxes as traces of past supernova activity in the solar neighbourhood".Astronomy and Astrophysics.680: A39.arXiv:2309.13983.Bibcode:2023A&A...680A..39S.doi:10.1051/0004-6361/202347532.ISSN 0004-6361.
  18. ^Ertel, Adrienne F.; Fry, Brian J.; Fields, Brian D.; Ellis, John (20 April 2023)."Supernova Dust Evolution Probed by Deep-sea 60Fe Time History".The Astrophysical Journal.947 (2):58–83.doi:10.3847/1538-4357/acb699.
  19. ^Harris, M. J.; Knödlseder, J.; Jean, P.; Cisana, E.; Diehl, R.; Lichti, G. G.; Roques, J.-P.; Schanne, S.; Weidenspointner, G. (2005-04-01)."Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI".Astronomy and Astrophysics.433 (3):L49–L52.arXiv:astro-ph/0502219.Bibcode:2005A&A...433L..49H.doi:10.1051/0004-6361:200500093.ISSN 0004-6361.
  20. ^Wang, W.; Siegert, T.; Dai, Z. G.; Diehl, R.; Greiner, J.; Heger, A.; Krause, M.; Lang, M.; Pleintinger, M. M. M.; Zhang, X. L. (2020-02-01)."Gamma-Ray Emission of 60Fe and 26Al Radioactivity in Our Galaxy".The Astrophysical Journal.889 (2): 169.arXiv:1912.07874.Bibcode:2020ApJ...889..169W.doi:10.3847/1538-4357/ab6336.ISSN 0004-637X.

Further reading

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_iron&oldid=1328658102#Iron-60"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp