Generally, it is hard to accurately compute the solutions of nonlinear differential equations due to its non-linearity. In order to overcome this difficulty, R. Hirota has made discrete versions of integrable systems with the viewpoint of "Preserve mathematical structures of integrable systems in the discrete versions".[9][10][11][12][13]
At the same time,Mark J. Ablowitz and others have not only made discrete soliton equations with discreteLax pair but also compared numerical results between integrable difference schemes and ordinary methods.[14][15][16][17][18] As a result of their experiments, they have found that the accuracy can be improved with integrable difference schemes at some cases.[19][20][21][22]
^Nakamura, Y. (2004).A new approach to numerical algorithms in terms of integrable systems. International Conference on Informatics Research for Development of Knowledge Society Infrastructure. IEEE. pp. 194–205.doi:10.1109/icks.2004.1313425.ISBN0-7695-2150-9.
^Chang, Xiang-Ke; He, Yi; Hu, Xing-Biao; Li, Shi-Hao (2017-07-01). "A new integrable convergence acceleration algorithm for computing Brezinski–Durbin–Redivo-Zaglia's sequence transformation via pfaffians".Numerical Algorithms.78 (1). Springer Science and Business Media LLC:87–106.doi:10.1007/s11075-017-0368-z.ISSN1017-1398.S2CID4974630.
^Hirota, Ryogo (1977-10-15). "Nonlinear Partial Difference Equations. I. A Difference Analogue of the Korteweg-de Vries Equation".Journal of the Physical Society of Japan.43 (4). Physical Society of Japan:1424–1433.Bibcode:1977JPSJ...43.1424H.doi:10.1143/jpsj.43.1424.ISSN0031-9015.
^Hirota, Ryogo (1977-12-15). "Nonlinear Partial Difference Equations. II. Discrete-Time Toda Equation".Journal of the Physical Society of Japan.43 (6). Physical Society of Japan:2074–2078.Bibcode:1977JPSJ...43.2074H.doi:10.1143/jpsj.43.2074.ISSN0031-9015.
^Hirota, Ryogo (1977-12-15). "Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation".Journal of the Physical Society of Japan.43 (6). Physical Society of Japan:2079–2086.Bibcode:1977JPSJ...43.2079H.doi:10.1143/jpsj.43.2079.ISSN0031-9015.
^Hirota, Ryogo (1978-07-15). "Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation".Journal of the Physical Society of Japan.45 (1). Physical Society of Japan:321–332.Bibcode:1978JPSJ...45..321H.doi:10.1143/jpsj.45.321.ISSN0031-9015.
^Hirota, Ryogo (1979-01-15). "Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations".Journal of the Physical Society of Japan.46 (1). Physical Society of Japan:312–319.Bibcode:1979JPSJ...46..312H.doi:10.1143/jpsj.46.312.ISSN0031-9015.
^Ablowitz, M. J.; Ladik, J. F. (1976). "A Nonlinear Difference Scheme and Inverse Scattering".Studies in Applied Mathematics.55 (3). Wiley:213–229.doi:10.1002/sapm1976553213.ISSN0022-2526.
^Ablowitz, M. J.; Ladik, J. F. (1977). "On the Solution of a Class of Nonlinear Partial Difference Equations".Studies in Applied Mathematics.57 (1). Wiley:1–12.doi:10.1002/sapm19775711.ISSN0022-2526.
^Taha, Thiab R; Ablowitz, Mark I (1984). "Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation".Journal of Computational Physics.55 (2). Elsevier BV:203–230.Bibcode:1984JCoPh..55..203T.doi:10.1016/0021-9991(84)90003-2.ISSN0021-9991.
^Taha, Thiab R; Ablowitz, Mark I (1984). "Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation".Journal of Computational Physics.55 (2). Elsevier BV:231–253.Bibcode:1984JCoPh..55..231T.doi:10.1016/0021-9991(84)90004-4.ISSN0021-9991.
^Taha, Thiab R; Ablowitz, Mark J (1988). "Analytical and numerical aspects of certain nonlinear evolution equations IV. Numerical, modified Korteweg-de Vries equation".Journal of Computational Physics.77 (2). Elsevier BV:540–548.Bibcode:1988JCoPh..77..540T.doi:10.1016/0021-9991(88)90184-2.ISSN0021-9991.