Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Integer square root

From Wikipedia, the free encyclopedia
Greatest integer less than or equal to square root

Innumber theory, theinteger square root (isqrt) of anon-negative integern is the non-negative integerm which is thegreatest integer less than or equal to thesquare root ofn,isqrt(n)=n.{\displaystyle \operatorname {isqrt} (n)=\lfloor {\sqrt {n}}\rfloor .}

For example,isqrt(27)=27=5.19615242270663...=5.{\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor =\lfloor 5.19615242270663...\rfloor =5.}

Introductory remark

[edit]

Lety{\displaystyle y} andk{\displaystyle k} be non-negative integers.

Algorithms that compute (thedecimal representation of)y{\displaystyle {\sqrt {y}}}run forever on each inputy{\displaystyle y} which is not aperfect square.[note 1]

Algorithms that computey{\displaystyle \lfloor {\sqrt {y}}\rfloor }do not run forever. They are nevertheless capable of computingy{\displaystyle {\sqrt {y}}} up to any desired accuracyk{\displaystyle k}.

Choose anyk{\displaystyle k} and computey×100k{\textstyle \lfloor {\sqrt {y\times 100^{k}}}\rfloor }.

For example (settingy=2{\displaystyle y=2}):k=0:2×1000=2=1k=1:2×1001=200=14k=2:2×1002=20000=141k=3:2×1003=2000000=1414k=8:2×1008=20000000000000000=141421356{\displaystyle {\begin{aligned}&k=0:\lfloor {\sqrt {2\times 100^{0}}}\rfloor =\lfloor {\sqrt {2}}\rfloor =1\\&k=1:\lfloor {\sqrt {2\times 100^{1}}}\rfloor =\lfloor {\sqrt {200}}\rfloor =14\\&k=2:\lfloor {\sqrt {2\times 100^{2}}}\rfloor =\lfloor {\sqrt {20000}}\rfloor =141\\&k=3:\lfloor {\sqrt {2\times 100^{3}}}\rfloor =\lfloor {\sqrt {2000000}}\rfloor =1414\\&\vdots \\&k=8:\lfloor {\sqrt {2\times 100^{8}}}\rfloor =\lfloor {\sqrt {20000000000000000}}\rfloor =141421356\\&\vdots \\\end{aligned}}}

Compare the results with2=1.41421356237309504880168872420969807856967187537694...{\displaystyle {\sqrt {2}}=1.41421356237309504880168872420969807856967187537694...}

It appears that the multiplication of the input by100k{\displaystyle 100^{k}} gives an accuracy ofk decimal digits.[note 2]

To compute the (entire) decimal representation ofy{\displaystyle {\sqrt {y}}}, one can executeisqrt(y){\displaystyle \operatorname {isqrt} (y)} an infinite number of times, increasingy{\displaystyle y} by a factor100{\displaystyle 100} at each pass.

Assume that in the next program (sqrtForever{\displaystyle \operatorname {sqrtForever} }) the procedureisqrt(y){\displaystyle \operatorname {isqrt} (y)} is already defined and — for the sake of the argument — that all variables can hold integers of unlimited magnitude.

ThensqrtForever(y){\displaystyle \operatorname {sqrtForever} (y)} will print the entire decimal representation ofy{\displaystyle {\sqrt {y}}}.[note 3]

importmath# assume isqrt computation as given heredefsqrtForever(y:int):""" Print sqrt(y), without halting """result=math.isqrt(y)print(str(result)+".",end="")# print result, followed by a decimal pointwhileTrue:# repeat forever ...y*=100# theoretical example: overflow is ignoredresult=math.isqrt(y)print(str(result%10),end="")# print last digit of result

The conclusion is that algorithms which computeisqrt() are computationally equivalent toalgorithms which computesqrt().

Another derivation ofy{\displaystyle {\sqrt {y}}} fromy{\displaystyle \lfloor {\sqrt {y}}\rfloor } is given in sectionContinued fraction of √c based on isqrt below.

Basic algorithms

[edit]

Theinteger square root of anon-negative integery{\displaystyle y} can be defined asy=max{x:x2y<(x+1)2,xN}{\displaystyle \lfloor {\sqrt {y}}\rfloor =\max\{x:x^{2}\leq y<(x+1)^{2},x\in \mathbb {N} \}}

For example,isqrt(27)=27=5{\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor =5} because62>27 and 5227{\displaystyle 6^{2}>27{\text{ and }}5^{2}\ngtr 27}.

Algorithm using linear search

[edit]

The followingPython programs are straightforward implementations.

defisqrt(y:int)->int:"""    Integer square root    (linear search, ascending)    """# initial underestimate, L <= isqrt(y)L=0while(L+1)*(L+1)<=y:L+=1returnL
defisqrt(y:int)->int:"""    Integer square root    (linear search, descending)    """# initial overestimate, isqrt(y) <= RR=ywhile(R*R>y):R-=1returnR

Linear search using addition

[edit]

In the program above (linear search, ascending) one can replace multiplication by addition, using the equivalence(L+1)2=L2+2L+1=L2+1+i=1L2.{\displaystyle (L+1)^{2}=L^{2}+2L+1=L^{2}+1+\sum _{i=1}^{L}2.}

defisqrt(y:int)->int:"""    Integer square root    (linear search, ascending) using addition    """L=0a=1d=3whilea<=y:a=a+dd=d+2L=L+1returnL

Algorithm using binary search

[edit]

Linear search sequentially checks every value until it hits the smallestx{\displaystyle x} wherex2>y{\displaystyle x^{2}>y}.

A speed-up is achieved by usingbinary search instead.

defisqrt(y:int)->int:""" Integer square root (binary search) """L=0# lower bound of the square rootR=y+1# upper bound of the square rootwhile(L!=R-1):M=(L+R)//2# midpoint to testif(M*M<=y):L=Melse:R=MreturnL

Numerical examples

[0,131073][0,65536][0,32768][0,16384][0,8192][0,4096][0,2048][0,1024][0,512][256,512][256,384][320,384][352,384][352,368][360,368][360,364][362,364][362,363]{\displaystyle {\begin{aligned}&[0,131073]\to [0,65536]\to [0,32768]\to [0,16384]\to [0,8192]\to [0,4096]\rightarrow [0,2048]\to [0,1024]\to [0,512]\\&\to [256,512]\to [256,384]\to [320,384]\to [352,384]\to [352,368]\to [360,368]\to [360,364]\to [362,364]\to [362,363]\end{aligned}}}
[0,2000001][0,1000000][0,500000][0,250000][0,125000][0,62500][0,31250][0,15625][0,7812][0,3906][0,1953][976,1953][976,1464][1220,1464][1342,1464][1403,1464][1403,1433][1403,1418][1410,1418][1414,1418][1414,1416][1414,1415]{\displaystyle {\begin{aligned}&[0,2000001]\to [0,1000000]\to [0,500000]\to [0,250000]\to [0,125000]\to [0,62500]\to [0,31250]\to [0,15625]\\&\to [0,7812]\to [0,3906]\to [0,1953]\to [976,1953]\to [976,1464]\to [1220,1464]\to [1342,1464]\to [1403,1464]\\&\to [1403,1433]\to [1403,1418]\to [1410,1418]\to [1414,1418]\to [1414,1416]\to [1414,1415]\end{aligned}}}
Linear search (ascending, starting from0{\displaystyle 0}) needs1414 steps.

Algorithm using Newton's method

[edit]

One way of calculatingn{\displaystyle {\sqrt {n}}} andisqrt(n){\displaystyle \operatorname {isqrt} (n)} is to useHeron's method, which is a special case ofNewton's method, to find a solution for the equationx2n=0{\displaystyle x^{2}-n=0}, giving the iterative formulaxk+1=12(xk+nxk),k0,x0>0.{\displaystyle x_{k+1}={\frac {1}{2}}\!\left(x_{k}+{\frac {n}{x_{k}}}\right),\quad k\geq 0,\quad x_{0}>0.}

Thesequence{xk}{\displaystyle \{x_{k}\}}convergesquadratically ton{\displaystyle {\sqrt {n}}} ask{\displaystyle k\to \infty }.[1][note 4]

Using only integer division

[edit]

For computingn{\displaystyle \lfloor {\sqrt {n}}\rfloor } one can use the quotient ofEuclidean division for both of the division operations. This has the advantage of only using integers for each intermediate value, thus making the use offloating point representations unnecessary.

Letn>0{\displaystyle n>0} and initial guessx0>0{\displaystyle x_{0}>0}. Define the integer sequence:

xk+1=xk+n/xk2,k=0,1,2,{\displaystyle x_{k+1}=\left\lfloor {\frac {x_{k}+\left\lfloor n/x_{k}\right\rfloor }{2}}\right\rfloor ,\quad k=0,1,2,\dots }

Proof of convergence

[edit]

1.Positivity: All terms are positive integers:xk>0{\displaystyle x_{k}>0} for allk{\displaystyle k}.

2.Monotonicity:

soxk+1=xk+n/xk2<xk+n/xk2<xk{\displaystyle x_{k+1}=\left\lfloor {\frac {x_{k}+\lfloor n/x_{k}\rfloor }{2}}\right\rfloor <{\frac {x_{k}+n/x_{k}}{2}}<x_{k}}.
Hence the sequence decreases.
soxk+1xk+n/xk12>xk1{\displaystyle x_{k+1}\geq {\frac {x_{k}+n/x_{k}-1}{2}}>x_{k}-1}.
Hence the sequence increases or stays the same.

3.Boundedness: The sequence is bounded below by 1 and above byx0{\displaystyle x_{0}}, so it is bounded.

4.Stabilization / Oscillation:A bounded monotone integer sequence either stabilizes or oscillates between two consecutive integers:

xk+1=xk{\displaystyle x_{k+1}=x_{k}} orxk+1=xk±1{\displaystyle x_{k+1}=x_{k}\pm 1}.

5.Integer "Fixed-point" Condition: At stabilization or oscillation:

xk+1=(xk+n/xk)/2{\displaystyle x_{k+1}=\lfloor (x_{k}+\lfloor n/x_{k}\rfloor )/2\rfloor }.
This ensures that the sequence is either atn{\displaystyle \lfloor {\sqrt {n}}\rfloor } or oscillating between the two nearest integers aroundn{\displaystyle {\sqrt {n}}}.

6.Conclusion: The sequence eventually stabilizes atn{\displaystyle \lfloor {\sqrt {n}}\rfloor } or oscillates betweenn{\displaystyle \lfloor {\sqrt {n}}\rfloor } andn{\displaystyle \lceil {\sqrt {n}}\rceil }.

Remark:

Example implementation

[edit]
defisqrt(n:int,x0:int=1)->int:"""    isqrt via Newton-Heron iteration with specified initial guess.    Uses 2-cycle oscillation detection.    Preconditions:        n >= 0                    # isqrt(0) = 0        x0 > 0, defaults to 1     # initial guess    Output:        isqrt(n)    """assertn>=0andx0>0,"Invalid input"# isqrt(0) = 0; isqrt(1) = 1ifn<2:returnnprev2=-1# x_{i-2}prev1=x0# x_{i-1}whileTrue:x1=(prev1+n//prev1)//2# Case 1: converged (steady value)ifx1==prev1:returnx1# Case 2: oscillation (2-cycle)ifx1==prev2andx1!=prev1:# We’re flipping between prev1 and prev2# Choose the smaller one (the true integer sqrt)returnmin(prev1,x1)# Move forwardprev2,prev1=prev1,x1

Numerical examples

[edit]

The callisqrt(2000000) converges to1414{\displaystyle 1414} in 14 passes throughwhile:

10000005000012500021250046250931270156667896407422821579142214141414{\displaystyle {\begin{aligned}&1000000\to 500001\to 250002\to 125004\to 62509\to 31270\to 15666\to 7896\to 4074\to 2282\\&\to 1579\to 1422\to 1414\rightarrow 1414\end{aligned}}}.

One iteration is gained by settingx0 ton/2{\displaystyle \lfloor n/2\rfloor } with the callisqrt(2000000, 1000000). Although Heron's method converges quadratically close to the solution, less than one bit precision per iteration is gained at the beginning. This means that the choice of the initial estimate is critical for the performance of the algorithm.[note 5] When a fast computation for the integer part of thebinary logarithm or for thebit-length is available (like e.g.n.bit_length() inPython), one should better start atx0=2(log2n)/2+1,{\displaystyle x_{0}=2^{\lfloor (\log _{2}n)/2\rfloor +1},} which is the leastpower of two bigger thann{\displaystyle {\sqrt {n}}}. In the example of the integer square root of2000000,log2n=20{\displaystyle \lfloor \log _{2}n\rfloor =20},x0=211=2048{\displaystyle x_{0}=2^{11}=2048}, and the resulting sequence is20481512141714141414.{\displaystyle 2048\rightarrow 1512\rightarrow 1417\rightarrow 1414\rightarrow 1414.} In this case only four iteration steps are needed. This corresponds to the callisqrt(2000000, 2048).

Digit-by-digit algorithm

[edit]

The traditionalpen-and-paper algorithm for computing the square rootn{\displaystyle {\sqrt {n}}} is based on working from higher digit places to lower, and as each new digit pick the largest that will still yield a squaren{\displaystyle \leq n}. If stopping after the one's place, the result computed will be the integer square root.

Using bitwise operations

[edit]

If working inbase 2, the choice of digit is simplified to that between 0 (the "small candidate") and 1 (the "large candidate"), and digit manipulations can be expressed in terms of binary shift operations. With* being multiplication,<< being left shift, and>> being logical right shift, arecursive algorithm to find the integer square root of anynatural number is:

defisqrt_recursive(n:int)->int:assertn>=0,"n must be a non-negative integer"ifn<2:returnn# Recursive call:small_cand=isqrt_recursive(n>>2)<<1# same as 2 * isqrt(n // 4)large_cand=small_cand+1iflarge_cand*large_cand>n:returnsmall_candelse:returnlarge_cand

Equivalent non-recursive program:[2][note 6]

defisqrt_iterative(x:int)->int:""" Guy, Martin (1985). "Fast integer square root by Mr. Woo's abacus algorithm" """assertx>=0,"x must be a non-negative integer"op=x;res=0# note: i << 1 is 2 * i, i << 2 is 4 * i,#       i >> 1 is i // 2, and i >> 2 is i // 4...# "one" starts at the highest power of four <= xone=1whileone<=op:one<<=2one>>=2whileone!=0:dltasqr=res+oneifop>=dltasqr:op-=dltasqrres+=one<<1res>>=1one>>=2returnres

SeeMethods of computing square roots § Binary numeral system (base 2) for an example.[2]

Karatsuba square root algorithm

[edit]

TheKaratsuba square root algorithm applies the samedivide-and-conquer principle as theKaratsuba multiplication algorithm to compute integer square roots. The method was formally analyzed by Paul Zimmermann (1999).[3] It recursively splits the input number into high and low halves, computes the square root of the higher half, and then determines the lower half algebraically.

Algorithm

[edit]

Paul Zimmermann (1999) gives the following algorithm.[3]

Algorithm SqrtRem(n=a3b3+a2b2+a1b+a0){\displaystyle {\text{Algorithm }}{\text{SqrtRem}}(n=a_{3}b^{3}+a_{2}b^{2}+a_{1}b+a_{0})}
Input: 0ai<b, with a3b/4{\displaystyle {\text{Input: }}0\leq a_{i}<b,{\text{ with }}a_{3}\geq b/4}
Output: (s,r) such that s2n=s2+r<(s+1)2{\displaystyle {\text{Output: }}(s,r){\text{ such that }}s^{2}\leq n=s^{2}+r<(s+1)^{2}}
(s,r)SqrtRem(a3b+a2){\displaystyle \qquad (s',r')\gets {\text{SqrtRem}}(a_{3}b+a_{2})}
(q,u)DivRem(rb+a1,2s){\displaystyle \qquad (q,u)\gets {\text{DivRem}}(r'b+a_{1},2s')}
ssb+q{\displaystyle \qquad s\gets s'b+q}
rub+a0q2{\displaystyle \qquad r\gets ub+a_{0}-q^{2}}
if r<0 then {\displaystyle \qquad {\text{if }}r<0{\text{ then }}}
rr+2s1{\displaystyle \qquad \qquad r\gets r+2s-1}
ss1{\displaystyle \qquad \qquad s\gets s-1}
return (s,r){\displaystyle \qquad {\text{return }}(s,r)}

Because only one recursive call is made per level, the total complexity remainsO(n){\displaystyle O(n)} in the number of bits. Each level performs only linear-time arithmetic on half-size numbers.

Comparison with Karatsuba multiplication

[edit]
PropertyKaratsuba multiplicationKaratsuba-style square root
Recursive calls per level31
RecurrenceT(n)=3T(n/2)+O(n){\displaystyle T(n)=3T(n/2)+O(n)}T(n)=T(n/2)+O(n){\displaystyle T(n)=T(n/2)+O(n)}
Asymptotic complexityO(nlog23)O(n1.585){\displaystyle O(n^{\log _{2}3})\!\approx \!O(n^{1.585})}O(n){\displaystyle O(n)}
Key operationThree partial multiplications and recombinationOne recursive square root and algebraic correction

Use and history

[edit]

The Karatsuba-style square root is mainly used forarbitrary-precision arithmetic on very large integers, where it combines efficiently withBurnikel–Ziegler division [de] andKaratsuba multiplication. It was first analyzed formally by Paul Zimmermann (1999).[3] Earlier practical work includes Martin Guy (1985),[2] and recursive versions appear inDonald Knuth (1998).[4] ModernGMP andMPIR libraries implement similar recursive techniques.

Implementation in Python

[edit]

ThePython program below implements Zimmermann’s algorithm. Given an integern0{\displaystyle n\geq 0},SqrtRem computes simultaneously its integer square roots=n{\displaystyle s=\lfloor {\sqrt {n}}\rfloor } and the corresponding remainderr=ns2{\displaystyle r=n-s^{2}}. The choice ofisqrt() isad libitum.[note 5]

defSqrtRem(n:int,word_bits:int=32)->tuple[int,int]:"""    Implementation based on Zimmermann's Karatsuba-style integer square root    algorithm [Zimmermann, 1999]. It recursively splits the input n into "limbs"    of size `word_bits` and combines partial results to compute the integer square root.    Args:        n (int): Non-negative integer to compute the square root of.        word_bits (int, optional): Number of bits per "limb" or chunk            used when recursively splitting n. Default is 32. Each            limb represents a fixed-size part of n for the algorithm.    Returns:        tuple[int, int]: s = integer square root of n, r = remainder (n - s*s).    Notes:        The limb size controls recursion granularity. Larger word_bits        reduces recursion depth but increases the size of subproblems;        smaller word_bits increases recursion depth but works on smaller chunks.    Reference:        Zimmermann, P. (1999). "Karatsuba Square Root", Research report #3805, Inria.        Archived: https://inria.hal.science/inria-00072854v1/file/RR-3805.pdf    """ifn<0:raiseValueError("n must be non-negative")ifn==0:return0,0# trivial case# Determine number of word-sized limbs (mimics “limb” splitting in Zimmermann)limblen=(n.bit_length()+word_bits-1)//word_bits# Base case: single limb — compute directlyiflimblen<=1:s=isqrt(n)# any isqrt, e.g., math.isqrt or customr=n-s*sreturns,r# --- Step 1: Split n into high and low parts ---half_limbs=limblen//2shift=half_limbs*word_bitshi=n>>shift# high half, corresponds to a3*b + a2lo=n&((1<<shift)-1)# low half, corresponds to a1*b + a0# --- Step 2: Recursive call on the high part ---s_high,r_high=SqrtRem(hi,word_bits)# approximate sqrt of high half# --- Step 3: Recombine to approximate full sqrt ---quarter=shift//2numerator=(r_high<<quarter)|(lo>>quarter)# simulate Zimmermann’s DivRem stepdenominator=s_high<<1# 2*s' termq=numerator//denominatorifdenominatorelse0# integer divisions_candidate=(s_high<<quarter)+q# recombine high and low# --- Step 4: Verification and correction ---# Ensure remainder is non-negative and s*s <= n < (s+1)*(s+1)s=s_candidater=n-s*swhiler<0:# overestimate corrections-=1r=n-s*swhile(s+1)*(s+1)<=n:# underestimate corrections+=1r=n-s*sreturns,r

Example usage

fornin[(2**32)+5,12345678901234567890,(1<<1512)-1]:s,r=SqrtRem(n)print(f"SqrtRem({n}) ={s}, remainder ={r}")
Computation

SqrtRem(4294967301) = 65536, remainder = 5

SqrtRem(12345678901234567890) = 3513641828, remainder = 5763386306

SqrtRem(143665816004337822710282600285310394341474369045835074863414468709543787931907367746179403311452034095731304066234112071267510472464260955153084575408147254672957261763907982395337943906645864229014250227057207826232751957053220218983971305018634078800548055251973907806245884614087189937340865371691338441989956445051526543084039211962387469415699218979531585795574920384684004258007709014706216763392717018544247025174258411677231986785008489302218244095) = 379032737378102767370356320425415662904513187772631008578870126471203845870697482014374611530431269030880793627229265919475483409207718357286202948008100864063587640630090308972232735749901964068667724412528434753635948938919935, remainder = 758065474756205534740712640850831325809026375545262017157740252942407691741394964028749223060862538061761587254458531838950966818415436714572405896016201728127175281260180617944465471499803928137335448825056869507271897877839870

In programming languages

[edit]

Someprogramming languages dedicate an explicit operation to the integer square root calculation in addition to the general case or can be extended by libraries to this end.

Programming languageExample useVersion introduced
ChapelBigInteger.sqrt(result, n);[5]
BigInteger.sqrtRem(result, remainder, n);
Unknown
Common Lisp(isqrt n)[6]Unknown
CrystalMath.isqrt(n)[7]1.2
Javan.sqrt()[8] (BigInteger only)9
Juliaisqrt(n)[9]0.3
Mapleisqrt(n)[10]Unknown
PARI/GPsqrtint(n)[11]1.35a[12] (asisqrt) or before
PHPsqrt($num)[13]4
Pythonmath.isqrt(n)[14]3.8
Racket(integer-sqrt n)[15]
(integer-sqrt/remainder n)
Unknown
RubyInteger.sqrt(n)[16]2.5.0
Rustn.isqrt()[17]
n.checked_isqrt()[18]
1.84.0
SageMathisqrt(n)[19]Unknown
Scheme(exact-integer-sqrt n)[20]R6RS
Tclisqrt($n)[21]8.5
Zigstd.math.sqrt(n)[22]Unknown

Continued fraction of √c based on isqrt

[edit]

The computation of thesimple continued fraction ofc{\displaystyle {\sqrt {c}}} can be carried out using only integer operations, withisqrt(c){\displaystyle \operatorname {isqrt} (c)} serving as the initial term. The algorithm[23] generates continued fraction expansionin canonical form.

Leta0=c{\displaystyle a_{0}=\lfloor {\sqrt {c}}\rfloor }be the integer square root ofc{\displaystyle c}.

Ifc{\displaystyle c} is a perfect square, the continued fraction terminates immediately:

c=[a0].{\displaystyle {\sqrt {c}}=[a_{0}].}

Otherwise, the continued fraction is periodic:

c=[a0;a1,a2,,am¯]{\displaystyle {\sqrt {c}}=[a_{0};{\overline {a_{1},a_{2},\dots ,a_{m}}}]},

where the overline indicates the repeating part.

The continued fraction can be obtained by the following recurrence, which uses only integer arithmetic:

m0=0,d0=1,a0=c.{\displaystyle m_{0}=0,\quad d_{0}=1,\quad a_{0}=\lfloor {\sqrt {c}}\rfloor .}
Fork0{\displaystyle k\geq 0},
mk+1=dkakmk,dk+1=cmk+12dk,ak+1=a0+mk+1dk+1.{\displaystyle m_{k+1}=d_{k}a_{k}-m_{k},\quad d_{k+1}={\frac {c-m_{k+1}^{2}}{d_{k}}},\quad a_{k+1}=\left\lfloor {\frac {a_{0}+m_{k+1}}{d_{k+1}}}\right\rfloor .}

Since there are only finitely many possible triples(mk,dk,ak){\displaystyle (m_{k},d_{k},a_{k})}, eventually one repeats, and from that point onward the continued fraction becomes periodic.

Implementation in Python

[edit]

On inputc{\displaystyle c}, a non-negative integer, the following program computes thesimple continued fraction ofc{\displaystyle {\sqrt {c}}}. The integer square rootc{\displaystyle \lfloor {\sqrt {c}}\rfloor } is computed once.[note 5] Only integer arithmetic is used. The program outputs[a0,(a1,a2,...,am)]{\displaystyle [a0,(a1,a2,...,am)]}, where the second element is the periodic part.

defcontinued_fraction_sqrt(c:int)->tuple[int,tuple[int,...]]:"""    Compute the continued fraction of sqrt(c) using integer arithmetic.    Returns [a0, (a1, a2, ..., am)] where the second element is the periodic part.    For perfect squares, the period is empty.    """a0=isqrt(c)# Perfect square: return period emptyifa0*a0==c:return(a0,())m,d,a=0,1,a0period=[]seen=set()whileTrue:m_next=d*a-md_next=(c-m_next*m_next)//da_next=(a0+m_next)//d_nextif(m_next,d_next,a_next)inseen:breakseen.add((m_next,d_next,a_next))period.append(a_next)m,d,a=m_next,d_next,a_nextreturn(a0,tuple(period))

Example usage

forcinlist(range(0,18))+[114]+[4097280036]:cf=continued_fraction_sqrt(c)print(f"sqrt({c}):{cf}")

Output

Input (c)Output (cf)Continued fraction
0[0]0=0{\displaystyle {\sqrt {0}}=0}
1[1]1=1{\displaystyle {\sqrt {1}}=1}
2[1; (2,)]2=[1;2¯]{\displaystyle {\sqrt {2}}=[1;{\overline {2}}]}
3[1; (1, 2)]3=[1;1,2¯]{\displaystyle {\sqrt {3}}=[1;{\overline {1,2}}]}
4[2]4=2{\displaystyle {\sqrt {4}}=2}
5[2; (4,)]5=[2;4¯]{\displaystyle {\sqrt {5}}=[2;{\overline {4}}]}
6[2; (2, 4)]6=[2;2,4¯]{\displaystyle {\sqrt {6}}=[2;{\overline {2,4}}]}
7[2; (1, 1, 1, 4)]7=[2;1,1,1,4¯]{\displaystyle {\sqrt {7}}=[2;{\overline {1,1,1,4}}]}
8[2; (1, 4)]8=[2;1,4¯]{\displaystyle {\sqrt {8}}=[2;{\overline {1,4}}]}
9[3]9=3{\displaystyle {\sqrt {9}}=3}
10[3; (6,)]10=[3;6¯]{\displaystyle {\sqrt {10}}=[3;{\overline {6}}]}
11[3; (3, 6)]11=[3;3,6¯]{\displaystyle {\sqrt {11}}=[3;{\overline {3,6}}]}
12[3; (2, 6)]12=[3;2,6¯]{\displaystyle {\sqrt {12}}=[3;{\overline {2,6}}]}
13[3; (1, 1, 1, 1, 6)]13=[3;1,1,1,1,6¯]{\displaystyle {\sqrt {13}}=[3;{\overline {1,1,1,1,6}}]}
14[3; (1, 2, 1, 6)]14=[3;1,2,1,6¯]{\displaystyle {\sqrt {14}}=[3;{\overline {1,2,1,6}}]}
15[3; (1, 6)]15=[3;1,6¯]{\displaystyle {\sqrt {15}}=[3;{\overline {1,6}}]}
16[4]16=4{\displaystyle {\sqrt {16}}=4}
17[4; (8,)]17=[4;8¯]{\displaystyle {\sqrt {17}}=[4;{\overline {8}}]}
114[10; (1, 2, 10, 2, 1, 20)]114=[10;1,2,10,2,1,20¯]{\displaystyle {\sqrt {114}}=[10;{\overline {1,2,10,2,1,20}}]}[note 7]
4097280036
[64009; (1, 1999, 3, 4, 1, 499, 3, 1, 3, 3, 1, 124, ...
                ..., 3, 1, 3, 499, 1, 4, 3, 1999, 1, 128018)]
period: 13,032 terms[note 8]

See also

[edit]

Notes

[edit]
  1. ^The square roots of the perfect squares (e.g., 0, 1, 4, 9, 16) are integers. In all other cases, the square roots of positive integers are irrational numbers.
  2. ^It is no surprise that the repeated multiplication by100 is a feature inJarvis (2006)
  3. ^The fractional part of square roots of perfect squares is rendered as000....
  4. ^SeeHeron's method.
  5. ^abcNewton's method can be given as follows
    (with the initial guess set tos{\displaystyle s}):
    defisqrt(s:int)->int:"""isqrt via Newton/Heron iteration."""L,R=1,swhileL<R:R=L+((R-L)//2)L=s//RreturnR

    Computations

    [1,2000000][2,1000000][3,500001][7,250002][15,125004][31,62509][63,31270][127,15666][253,7896][490,4074][876,2282][1266,1579][1406,1422][1414,1414]{\displaystyle {\begin{aligned}&[1,2000000]\to [2,1000000]\to [3,500001]\\&\to [7,250002]\to [15,125004]\to [31,62509]\\&\to [63,31270]\to [127,15666]\to [253,7896]\\&\to [490,4074]\to [876,2282]\to [1266,1579]\\&\to [1406,1422]\to [1414,1414]\end{aligned}}}
    One sees that the performance gain of Newton's method over binary search is due to the fact thats{\displaystyle \lfloor {\sqrt {s}}\rfloor } is approached simultaneously fromLeft andRight, whereas binary search adjusts only one side at each iteration.
  6. ^The algorithm is explained inSquare_root_algorithms#Binary numeral system (base 2)
  7. ^See theexample in the articlePeriodic continued fraction.
  8. ^The continued fraction expansion of4097280036{\displaystyle {\sqrt {4097280036}}} has a period of 13,032 terms. While Python is unable to display the entire sequence on screen due to its length, writing the output to a file completes successfully.

References

[edit]
  1. ^Johnson, S. G. (4 February 2015)."Square Roots via Newton's Method"(PDF).MIT Course 18.335: Introduction to Numerical Methods. Retrieved12 October 2025.
  2. ^abcGuy, Martin (1985)."Fast integer square root by Mr. Woo's abacus algorithm". University of Kent at Canterbury (UKC).Archived from the original on 6 March 2012. Retrieved5 October 2025.
  3. ^abcZimmermann, Paul (1999)."Karatsuba Square Root"(PDF). Research report #3805.Inria (published 24 May 2006).Archived(PDF) from the original on 11 May 2023.
  4. ^Knuth, Donald E. (1998).The Art of Computer Programming, Volume 2: Seminumerical Algorithms (3rd ed.). Addison–Wesley.ISBN 9780201896848.
  5. ^"BigInteger - Chapel Documentation 2.1".Chapel Documentation - Chapel Documentation 2.1.
  6. ^"CLHS: Function SQRT, ISQRT".Common Lisp HyperSpec (TM).
  7. ^"Math - Crystal 1.13.2".The Crystal Programming Language API docs.
  8. ^"BigInteger (Java SE 21 & JDK 21)".JDK 21 Documentation.
  9. ^"Mathematics - The Julia Language".Julia Documentation - The Julia Language.
  10. ^"iroot- Maple Help".Help - Maplesoft.
  11. ^"Catalogue of GP/PARI Functions: Arithmetic functions".PARI/GP Development Headquarters.
  12. ^"Index of /archive/science/math/multiplePrecision/pari/".PSG Digital Resources. Archived fromthe original on 6 November 2024.
  13. ^"Mathematical functions".PHP Documentation.
  14. ^"Mathematical functions".Python Standard Library documentation.
  15. ^"4.3.2 Generic Numerics".Racket Documentation.
  16. ^"class Integer - RDoc Documentation".RDoc Documentation.
  17. ^"i32 - Rust".std - Rust.
  18. ^"i32 - Rust".std - Rust.
  19. ^"Elements of the ring ℤ of integers - Standard Commutative Rings".SageMath Documentation.
  20. ^"Revised7 Report on the Algorithmic Language Scheme".Scheme Standards.
  21. ^"mathfunc manual page - Tcl Mathematical Functions".Tcl/Tk 8.6 Manual.
  22. ^"std.math.sqrt.sqrt - Zig Documentation".Home ⚡ Zig Programming Language.
  23. ^Beceanu, Marius (5 February 2003)."Period of the Continued Fraction of sqrt(n)"(PDF). Theorem 2.3.Archived(PDF) from the original on 21 December 2015. Retrieved5 October 2025.

External links

[edit]
Primality tests
Prime-generating
Integer factorization
Multiplication
Euclideandivision
Discrete logarithm
Greatest common divisor
Modular square root
Other algorithms
  • Italics indicate that algorithm is for numbers of special forms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Integer_square_root&oldid=1333190360"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp