Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Hofmann rearrangement

TheHofmann rearrangement (Hofmann degradation) is theorganic reaction of a primaryamide to a primaryamine with one lesscarbon atom.[1][2][3] The reaction involvesoxidation of the nitrogen followed byrearrangement of the carbonyl and nitrogen to give anisocyanate intermediate. The reaction can form a wide range of products, includingalkyl andaryl amines.

Hofmann rearrangement
Named afterAugust Wilhelm von Hofmann
Reaction typeRearrangement reaction
Identifiers
RSC ontology IDRXNO:0000410
The Hofmann rearrangement

The reaction is named after its discoverer,August Wilhelm von Hofmann, and should not be confused with theHofmann elimination, anothername reaction for which he iseponymous.

Mechanism

edit

The reaction ofbromine withsodium hydroxide formssodium hypobromitein situ, which transforms the primaryamide into an intermediate isocyanate. The formation of an intermediatenitrene is not possible because it implies also the formation of ahydroxamic acid as a byproduct, which has never been observed. The intermediate isocyanate is hydrolyzed to a primary amine, giving offcarbon dioxide.[2]

 

  1. Base abstracts an acidic N-H proton, yielding an anion.
  2. The anion reacts with bromine in an α-substitution reaction to give anN-bromoamide.
  3. Base abstraction of the remaining amide proton gives a bromoamide anion.
  4. The bromoamide anion rearranges as the R group attached to the carbonyl carbon migrates to nitrogen at the same time the bromide ion leaves, giving an isocyanate.
  5. The isocyanate adds water in a nucleophilic addition step to yield acarbamic acid (akaurethane).
  6. The carbamic acid spontaneously loses CO2, yielding the amine product.

Variations

edit

Several reagents can be substituted for bromine.Sodium hypochlorite,[4]lead tetraacetate,[5]N-bromosuccinimide, and(bis(trifluoroacetoxy)iodo)benzene[6] have all been used for Hofmann rearrangements.

The intermediateisocyanate can be trapped with variousnucleophiles to form stablecarbamates or other products rather than undergoing decarboxylation. In the following example, the intermediate isocyanate is trapped bymethanol.[7]

 
Formation of a carbamate ester via a Hofmann rearrangement usingNBS.

In a similar fashion, the intermediate isocyanate can be trapped bytert-butyl alcohol, yielding thetert-butoxycarbonyl (Boc)-protected amine.

The Hofmann Rearrangement also can be used to yield carbamates fromα,β-unsaturated or α-hydroxy amides[2][8] or nitriles from α,β-acetylenic amides[2][9] in good yields (≈70%).

Applications

edit

See also

edit

References

edit
  1. ^Hofmann, A. W. (1881)."Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide" [On the action of bromine in alkaline solution on amides].Berichte der Deutschen Chemischen Gesellschaft.14 (2):2725–2736.doi:10.1002/cber.188101402242.
  2. ^abcdEverett, Wallis; Lane, John (1946).The Hofmann Reaction. Vol. 3. pp. 267–306.doi:10.1002/0471264180.or003.07.ISBN 9780471005285.{{cite book}}:|journal= ignored (help)
  3. ^Shioiri, Takayuki (1991). "Degradation Reactions".Comprehensive Organic Synthesis. Vol. 6. pp. 795–828.doi:10.1016/B978-0-08-052349-1.00172-4.ISBN 9780080359298.
  4. ^Mohan, Ram S.; Monk, Keith A. (1999)."The Hofmann Rearrangement Using Household Bleach: Synthesis of 3-Nitroaniline".Journal of Chemical Education.76 (12): 1717.Bibcode:1999JChEd..76.1717M.doi:10.1021/ed076p1717.
  5. ^Baumgarten, Henry; Smith, Howard; Staklis, Andris (1975). "Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate".The Journal of Organic Chemistry.40 (24):3554–3561.doi:10.1021/jo00912a019.
  6. ^Almond, Merrick R.; Stimmel, Julie B.; Thompson, Alan; Loudon, Marc (1988). "Hofmann Rearrangement under Mildly Acidic Conditions using [I,I-Bis(Trifluoroacetoxy)]iodobenzene: Cyclobutylamine Hydrochloride from Cyclobutanecarboxamide".Organic Syntheses.66: 132.doi:10.15227/orgsyn.066.0132.
  7. ^Keillor, Jeffrey W.; Huang, Xicai (2002). "Methyl Carbamate Formation via Modified Hofmann Rearrangement Reactions: MethylN-(p-Methoxyphenyl)carbamate".Organic Syntheses.78: 234.doi:10.15227/orgsyn.078.0234.
  8. ^Weerman, R.A. (1913)."Einwirkung von Natriumhypochlorit auf Amide ungesättigter Säuren".Justus Liebigs Annalen der Chemie.401 (1):1–20.doi:10.1002/jlac.19134010102.
  9. ^Rinkes, I. J. (1920). "De l'action de l'Hypochlorite de Sodium sur les Amides D'Acides".Recueil des Travaux Chimiques des Pays-Bas.39 (12):704–710.doi:10.1002/recl.19200391204.
  10. ^Maki, Takao; Takeda, Kazuo (2000). "Benzoic Acid and Derivatives".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a03_555.ISBN 3527306730..
  11. ^Allen, C. F. H.; Wolf, Calvin N. (1950)."3-Aminopyridine".Organic Syntheses.30: 3.doi:10.15227/orgsyn.030.0003;Collected Volumes, vol. 4, p. 45.
  12. ^US 20080103334, "Process For Synthesis Of Gabapentin" 

Bibliography

edit
  • Clayden, Jonathan (2007).Organic Chemistry. Oxford University Press Inc. pp. 1073.ISBN 978-0-19-850346-0.
  • Fieser, Louis F. (1962).Advanced Organic Chemistry. Reinhold Publishing Corporation, Chapman & Hall, Ltd. pp. 499–501.

[8]ページ先頭

©2009-2025 Movatter.jp