Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Haar wavelet

In mathematics, theHaar wavelet is a sequence of rescaled "square-shaped" functions which together form awavelet family or basis. Wavelet analysis is similar toFourier analysis in that it allows a target function over an interval to be represented in terms of anorthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.

The Haar wavelet

TheHaar sequence was proposed in 1909 byAlfréd Haar.[1] Haar used these functions to give an example of an orthonormal system for the space ofsquare-integrable functions on theunit interval [0, 1]. The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of theDaubechies wavelet, the Haar wavelet is also known asDb1.

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is notcontinuous, and therefore notdifferentiable. This property can, however, be an advantage for the analysis of signals with sudden transitions (discrete signals), such as monitoring of tool failure in machines.[2]

The Haar wavelet's mother wavelet functionψ(t){\displaystyle \psi (t)} can be described as

ψ(t)={10t<12,112t<1,0otherwise.{\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<{\frac {1}{2}},\\-1&{\frac {1}{2}}\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}

Itsscaling functionφ(t){\displaystyle \varphi (t)} can be described as

φ(t)={10t<1,0otherwise.{\displaystyle \varphi (t)={\begin{cases}1\quad &0\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}

Haar functions and Haar system

edit

For every pairn,k of integers inZ{\displaystyle \mathbb {Z} } , theHaar functionψn,k is defined on thereal lineR{\displaystyle \mathbb {R} }  by the formula

ψn,k(t)=2n/2ψ(2ntk),tR.{\displaystyle \psi _{n,k}(t)=2^{n/2}\psi (2^{n}t-k),\quad t\in \mathbb {R} .} 

This function is supported on theright-open intervalIn,k =[k2n, (k+1)2n),i.e., itvanishes outside that interval. It has integral 0 and norm 1 in theHilbert space L2(R{\displaystyle \mathbb {R} } ),

Rψn,k(t)dt=0,ψn,kL2(R)2=Rψn,k(t)2dt=1.{\displaystyle \int _{\mathbb {R} }\psi _{n,k}(t)\,dt=0,\quad \|\psi _{n,k}\|_{L^{2}(\mathbb {R} )}^{2}=\int _{\mathbb {R} }\psi _{n,k}(t)^{2}\,dt=1.} 

The Haar functions are pairwiseorthogonal,

Rψn1,k1(t)ψn2,k2(t)dt=δn1n2δk1k2,{\displaystyle \int _{\mathbb {R} }\psi _{n_{1},k_{1}}(t)\psi _{n_{2},k_{2}}(t)\,dt=\delta _{n_{1}n_{2}}\delta _{k_{1}k_{2}},} 

whereδij{\displaystyle \delta _{ij}}  represents theKronecker delta. Here is the reason for orthogonality: when the two supporting intervalsIn1,k1{\displaystyle I_{n_{1},k_{1}}}  andIn2,k2{\displaystyle I_{n_{2},k_{2}}}  are not equal, then they are either disjoint, or else the smaller of the two supports, sayIn1,k1{\displaystyle I_{n_{1},k_{1}}} , is contained in the lower or in the upper half of the other interval, on which the functionψn2,k2{\displaystyle \psi _{n_{2},k_{2}}}  remains constant. It follows in this case that the product of these two Haar functions is a multiple of the first Haar function, hence the product has integral 0.

TheHaar system on the real line is the set of functions

{ψn,k(t):nZ,kZ}.{\displaystyle \{\psi _{n,k}(t)\;:\;n\in \mathbb {Z} ,\;k\in \mathbb {Z} \}.} 

It iscomplete inL2(R{\displaystyle \mathbb {R} } ):The Haar system on the line is an orthonormal basis inL2(R{\displaystyle \mathbb {R} } ).

Haar wavelet properties

edit

The Haar wavelet has several notable properties:

  1. Any continuous real function with compact support can be approximated uniformly bylinear combinations ofφ(t),φ(2t),φ(4t),,φ(2nt),{\displaystyle \varphi (t),\varphi (2t),\varphi (4t),\dots ,\varphi (2^{n}t),\dots }  and their shifted functions. This extends to those function spaces where any function therein can be approximated by continuous functions.
  2. Any continuous real function on [0, 1] can be approximated uniformly on [0, 1] by linear combinations of the constant function 1,ψ(t),ψ(2t),ψ(4t),,ψ(2nt),{\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{n}t),\dots }  and their shifted functions.[3]
  3. Orthogonality in the form
    2(n+n1)/2ψ(2ntk)ψ(2n1tk1)dt=δnn1δkk1.{\displaystyle \int _{-\infty }^{\infty }2^{(n+n_{1})/2}\psi (2^{n}t-k)\psi (2^{n_{1}}t-k_{1})\,dt=\delta _{nn_{1}}\delta _{kk_{1}}.} 
    Here,δij{\displaystyle \delta _{ij}}  represents theKronecker delta. Thedual function of ψ(t) is ψ(t) itself.
  4. Wavelet/scaling functions with different scalen have a functional relationship:[4] since
    φ(t)=φ(2t)+φ(2t1)ψ(t)=φ(2t)φ(2t1),{\displaystyle {\begin{aligned}\varphi (t)&=\varphi (2t)+\varphi (2t-1)\\[.2em]\psi (t)&=\varphi (2t)-\varphi (2t-1),\end{aligned}}} 
    it follows that coefficients of scalen can be calculated by coefficients of scalen+1:
    Ifχw(k,n)=2n/2x(t)φ(2ntk)dt{\displaystyle \chi _{w}(k,n)=2^{n/2}\int _{-\infty }^{\infty }x(t)\varphi (2^{n}t-k)\,dt} 
    andXw(k,n)=2n/2x(t)ψ(2ntk)dt{\displaystyle \mathrm {X} _{w}(k,n)=2^{n/2}\int _{-\infty }^{\infty }x(t)\psi (2^{n}t-k)\,dt} 
    then
    χw(k,n)=21/2(χw(2k,n+1)+χw(2k+1,n+1)){\displaystyle \chi _{w}(k,n)=2^{-1/2}{\bigl (}\chi _{w}(2k,n+1)+\chi _{w}(2k+1,n+1){\bigr )}} 
    Xw(k,n)=21/2(χw(2k,n+1)χw(2k+1,n+1)).{\displaystyle \mathrm {X} _{w}(k,n)=2^{-1/2}{\bigl (}\chi _{w}(2k,n+1)-\chi _{w}(2k+1,n+1){\bigr )}.} 

Haar system on the unit interval and related systems

edit

In this section, the discussion is restricted to theunit interval [0, 1] and to the Haar functions that are supported on [0, 1]. The system of functions considered by Haar in 1910,[5]called theHaar system on [0, 1] in this article, consists of the subset of Haar wavelets defined as

{t[0,1]ψn,k(t):n,kN{0},0k<2n},{\displaystyle \{t\in [0,1]\mapsto \psi _{n,k}(t)\;:\;n,k\in \mathbb {N} \cup \{0\},\;0\leq k<2^{n}\},} 

with the addition of the constant function1 on [0, 1].

InHilbert space terms, this Haar system on [0, 1] is a complete orthonormal system,i.e., anorthonormal basis, for the spaceL2([0, 1]) of square integrable functions on the unit interval.

The Haar system on [0, 1] —with the constant function1 as first element, followed with the Haar functions ordered according to thelexicographic ordering of couples(n,k)— is further amonotoneSchauder basis for the spaceLp([0, 1]) when1 ≤p < ∞.[6] This basis isunconditional when1 <p < ∞.[7]

There is a relatedRademacher system consisting of sums of Haar functions,

rn(t)=2n/2k=02n1ψn,k(t),t[0,1], n0.{\displaystyle r_{n}(t)=2^{-n/2}\sum _{k=0}^{2^{n}-1}\psi _{n,k}(t),\quad t\in [0,1],\ n\geq 0.} 

Notice that |rn(t)| = 1 on [0, 1). This is an orthonormal system but it is not complete.[8][9]In the language ofprobability theory, the Rademacher sequence is an instance of a sequence ofindependentBernoullirandom variables withmean 0. TheKhintchine inequality expresses the fact that in all the spacesLp([0, 1]),1 ≤p < ∞, the Rademacher sequence isequivalent to the unit vector basis in ℓ2.[10] In particular, theclosed linear span of the Rademacher sequence inLp([0, 1]),1 ≤p < ∞, isisomorphic to ℓ2.

The Faber–Schauder system

edit

TheFaber–Schauder system[11][12][13] is the family of continuous functions on [0, 1] consisting of the constant function 1, and of multiples ofindefinite integrals of the functions in the Haar system on [0, 1], chosen to have norm 1 in themaximum norm. This system begins withs0 = 1, thens1(t) =t is the indefinite integral vanishing at 0 of the function 1, first element of the Haar system on [0, 1]. Next, for every integern ≥ 0, functionssn,k are defined by the formula

sn,k(t)=21+n/20tψn,k(u)du,t[0,1], 0k<2n.{\displaystyle s_{n,k}(t)=2^{1+n/2}\int _{0}^{t}\psi _{n,k}(u)\,du,\quad t\in [0,1],\ 0\leq k<2^{n}.} 

These functionssn,k are continuous,piecewise linear, supported by the intervalIn,k that also supports ψn,k. The functionsn,k is equal to 1 at the midpointxn,k of the interval In,k, linear on both halves of that interval. It takes values between 0 and 1 everywhere.

The Faber–Schauder system is aSchauder basis for the spaceC([0, 1]) of continuous functions on [0, 1].[6] For every f inC([0, 1]), the partial sum

fn+1=a0s0+a1s1+m=0n1(k=02m1am,ksm,k)C([0,1]){\displaystyle f_{n+1}=a_{0}s_{0}+a_{1}s_{1}+\sum _{m=0}^{n-1}{\Bigl (}\sum _{k=0}^{2^{m}-1}a_{m,k}s_{m,k}{\Bigr )}\in C([0,1])} 

of theseries expansion off in the Faber–Schauder system is the continuous piecewise linear function that agrees with f at the2n + 1 pointsk2n, where 0 ≤k ≤ 2n. Next, the formula

fn+2fn+1=k=02n1(f(xn,k)fn+1(xn,k))sn,k=k=02n1an,ksn,k{\displaystyle f_{n+2}-f_{n+1}=\sum _{k=0}^{2^{n}-1}{\bigl (}f(x_{n,k})-f_{n+1}(x_{n,k}){\bigr )}s_{n,k}=\sum _{k=0}^{2^{n}-1}a_{n,k}s_{n,k}} 

gives a way to compute the expansion off step by step. Sincef isuniformly continuous, the sequence {fn} converges uniformly tof. It follows that the Faber–Schauder series expansion off converges inC([0, 1]), and the sum of this series is equal to f.

The Franklin system

edit

TheFranklin system is obtained from the Faber–Schauder system by theGram–Schmidt orthonormalization procedure.[14][15]Since the Franklin system has the samelinear span as that of the Faber–Schauder system, this span is dense inC([0, 1]), hence inL2([0, 1]). The Franklin system is therefore an orthonormal basis forL2([0, 1]), consisting of continuous piecewise linear functions. P. Franklin proved in 1928 that this system is a Schauder basis forC([0, 1]).[16] The Franklin system is also an unconditional Schauder basis for the spaceLp([0, 1]) when1 <p < ∞.[17]The Franklin system provides a Schauder basis in thedisk algebraA(D).[17]This was proved in 1974 by Bočkarev, after the existence of a basis for the disk algebra had remained open for more than forty years.[18]

Bočkarev's construction of a Schauder basis inA(D) goes as follows: let f be a complex valuedLipschitz function on [0, π]; then f is the sum of acosine series withabsolutely summable coefficients. Let T(f) be the element ofA(D) defined by the complexpower series with the same coefficients,

{f:x[0,π]n=0ancos(nx)}{T(f):zn=0anzn,|z|1}.{\displaystyle \left\{f:x\in [0,\pi ]\rightarrow \sum _{n=0}^{\infty }a_{n}\cos(nx)\right\}\longrightarrow \left\{T(f):z\rightarrow \sum _{n=0}^{\infty }a_{n}z^{n},\quad |z|\leq 1\right\}.} 

Bočkarev's basis forA(D) is formed by the images under T of the functions in the Franklin system on [0, π]. Bočkarev's equivalent description for the mapping T starts by extendingf to aneven Lipschitz function g1 on [−π, π], identified with a Lipschitz function on theunit circle T. Next, letg2 be theconjugate function of g1, and defineT(f) to be the function in A(D) whose value on the boundaryT of D is equal to g1 + ig2.

When dealing with 1-periodic continuous functions, or rather with continuous functionsf on [0, 1] such thatf(0) =f(1), one removes the functions1(t) =t from the Faber–Schauder system, in order to obtain theperiodic Faber–Schauder system. Theperiodic Franklin system is obtained by orthonormalization from the periodic Faber–-Schauder system.[19]One can prove Bočkarev's result onA(D) by proving that the periodic Franklin system on [0, 2π] is a basis for a Banach spaceAr isomorphic toA(D).[19] The spaceAr consists of complex continuous functions on the unit circleT whoseconjugate function is also continuous.

Haar matrix

edit

The 2×2 Haar matrix that is associated with the Haar wavelet is

H2=[1111].{\displaystyle H_{2}={\begin{bmatrix}1&1\\1&-1\end{bmatrix}}.} 

Using thediscrete wavelet transform, one can transform any sequence(a0,a1,,a2n,a2n+1){\displaystyle (a_{0},a_{1},\dots ,a_{2n},a_{2n+1})}  of even length into a sequence of two-component-vectors((a0,a1),(a2,a3),,(a2n,a2n+1)){\displaystyle \left(\left(a_{0},a_{1}\right),\left(a_{2},a_{3}\right),\dots ,\left(a_{2n},a_{2n+1}\right)\right)} . If one right-multiplies each vector with the matrixH2{\displaystyle H_{2}} , one gets the result((s0,d0),,(sn,dn)){\displaystyle \left(\left(s_{0},d_{0}\right),\dots ,\left(s_{n},d_{n}\right)\right)}  of one stage of the fast Haar-wavelet transform. Usually one separates the sequencess andd and continues with transforming the sequences. Sequences is often referred to as theaverages part, whereasd is known as thedetails part.[20]

If one has a sequence of length a multiple of four, one can build blocks of 4 elements and transform them in a similar manner with the 4×4 Haar matrix

H4=[1111111111000011],{\displaystyle H_{4}={\begin{bmatrix}1&1&1&1\\1&1&-1&-1\\1&-1&0&0\\0&0&1&-1\end{bmatrix}},} 

which combines two stages of the fast Haar-wavelet transform.

Compare with aWalsh matrix, which is a non-localized 1/–1 matrix.

Generally, the 2N×2N Haar matrix can be derived by the following equation.

H2N=[HN[1,1]IN[1,1]]{\displaystyle H_{2N}={\begin{bmatrix}H_{N}\otimes [1,1]\\I_{N}\otimes [1,-1]\end{bmatrix}}} 
whereIN=[100010001]{\displaystyle I_{N}={\begin{bmatrix}1&0&\dots &0\\0&1&\dots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\dots &1\end{bmatrix}}}  and{\displaystyle \otimes }  is theKronecker product.

TheKronecker product ofAB{\displaystyle A\otimes B} , whereA{\displaystyle A}  is an m×n matrix andB{\displaystyle B}  is a p×q matrix, is expressed as

AB=[a11Ba1nBam1BamnB].{\displaystyle A\otimes B={\begin{bmatrix}a_{11}B&\dots &a_{1n}B\\\vdots &\ddots &\vdots \\a_{m1}B&\dots &a_{mn}B\end{bmatrix}}.} 

An un-normalized 8-point Haar matrixH8{\displaystyle H_{8}}  is shown below

H8=[1111111111111111111100000000111111000000001100000000110000000011].{\displaystyle H_{8}={\begin{bmatrix}1&1&1&1&1&1&1&1\\1&1&1&1&-1&-1&-1&-1\\1&1&-1&-1&0&0&0&0&\\0&0&0&0&1&1&-1&-1\\1&-1&0&0&0&0&0&0&\\0&0&1&-1&0&0&0&0\\0&0&0&0&1&-1&0&0&\\0&0&0&0&0&0&1&-1\end{bmatrix}}.} 

Note that, the above matrix is an un-normalized Haar matrix. The Haar matrix required by the Haar transform should be normalized.

From the definition of the Haar matrixH{\displaystyle H} , one can observe that, unlike theFourier transform,H{\displaystyle H}  has only real elements (i.e., 1, -1 or 0) and is non-symmetric.

Take the 8-point Haar matrixH8{\displaystyle H_{8}}  as an example. The first row ofH8{\displaystyle H_{8}}  measures the average value, and the second row ofH8{\displaystyle H_{8}}  measures a low frequency component of the input vector. The next two rows are sensitive to the first and second half of the input vector respectively, which corresponds to moderate frequency components. The remaining four rows are sensitive to the four section of the input vector, which corresponds to high frequency components.[21]

Haar transform

edit

TheHaar transform is the simplest of thewavelet transforms. This transform cross-multiplies a function against the Haar wavelet with various shifts and stretches, like the Fourier transform cross-multiplies a function against a sine wave with two phases and many stretches.[22][clarification needed]

Introduction

edit

The Haar transform is one of the oldest transform functions, proposed in 1910 by the Hungarian mathematicianAlfréd Haar. It is found effective in applications such as signal and image compression in electrical and computer engineering as it provides a simple and computationally efficient approach for analysing the local aspects of a signal.

The Haar transform is derived from the Haar matrix. An example of a 4×4 Haar transformation matrix is shown below.

H4=12[1111111122000022]{\displaystyle H_{4}={\frac {1}{2}}{\begin{bmatrix}1&1&1&1\\1&1&-1&-1\\{\sqrt {2}}&-{\sqrt {2}}&0&0\\0&0&{\sqrt {2}}&-{\sqrt {2}}\end{bmatrix}}} 

The Haar transform can be thought of as a sampling process in which rows of the transformation matrix act as samples of finer and finer resolution.

Compare with theWalsh transform, which is also 1/–1, but is non-localized.

Property

edit

The Haar transform has the following properties

  1. No need for multiplications. It requires only additions and there are many elements with zero value in the Haar matrix, so the computation time is short. It is faster thanWalsh transform, whose matrix is composed of +1 and −1.
  2. Input and output length are the same. However, the length should be a power of 2, i.e.N=2k,kN{\displaystyle N=2^{k},k\in \mathbb {N} } .
  3. It can be used to analyse the localized feature of signals. Due to theorthogonal property of the Haar function, the frequency components of input signal can be analyzed.

Haar transform and Inverse Haar transform

edit

The Haar transformyn of an n-input functionxn is

yn=Hnxn{\displaystyle y_{n}=H_{n}x_{n}} 

The Haar transform matrix is real and orthogonal. Thus, the inverse Haar transform can be derived by the following equations.

H=H,H1=HT, i.e. HHT=I{\displaystyle H=H^{*},H^{-1}=H^{T},{\text{ i.e. }}HH^{T}=I} 
whereI{\displaystyle I}  is the identity matrix. For example, when n = 4
H4TH4=12[1120112011021102]12[1111111122000022]=[1000010000100001]{\displaystyle H_{4}^{T}H_{4}={\frac {1}{2}}{\begin{bmatrix}1&1&{\sqrt {2}}&0\\1&1&-{\sqrt {2}}&0\\1&-1&0&{\sqrt {2}}\\1&-1&0&-{\sqrt {2}}\end{bmatrix}}\cdot \;{\frac {1}{2}}{\begin{bmatrix}1&1&1&1\\1&1&-1&-1\\{\sqrt {2}}&-{\sqrt {2}}&0&0\\0&0&{\sqrt {2}}&-{\sqrt {2}}\end{bmatrix}}={\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}}} 

Thus, the inverse Haar transform is

xn=HTyn{\displaystyle x_{n}=H^{T}y_{n}} 

Example

edit

The Haar transform coefficients of a n=4-point signalx4=[1,2,3,4]T{\displaystyle x_{4}=[1,2,3,4]^{T}}  can be found as

y4=H4x4=12[1111111122000022][1234]=[521/21/2]{\displaystyle y_{4}=H_{4}x_{4}={\frac {1}{2}}{\begin{bmatrix}1&1&1&1\\1&1&-1&-1\\{\sqrt {2}}&-{\sqrt {2}}&0&0\\0&0&{\sqrt {2}}&-{\sqrt {2}}\end{bmatrix}}{\begin{bmatrix}1\\2\\3\\4\end{bmatrix}}={\begin{bmatrix}5\\-2\\-1/{\sqrt {2}}\\-1/{\sqrt {2}}\end{bmatrix}}} 

The input signal can then be perfectly reconstructed by the inverse Haar transform

x4^=H4Ty4=12[1120112011021102][521/21/2]=[1234]{\displaystyle {\hat {x_{4}}}=H_{4}^{T}y_{4}={\frac {1}{2}}{\begin{bmatrix}1&1&{\sqrt {2}}&0\\1&1&-{\sqrt {2}}&0\\1&-1&0&{\sqrt {2}}\\1&-1&0&-{\sqrt {2}}\end{bmatrix}}{\begin{bmatrix}5\\-2\\-1/{\sqrt {2}}\\-1/{\sqrt {2}}\end{bmatrix}}={\begin{bmatrix}1\\2\\3\\4\end{bmatrix}}} 

See also

edit

Notes

edit
  1. ^see p. 361 inHaar (1910).
  2. ^Lee, B.; Tarng, Y. S. (1999). "Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current".International Journal of Advanced Manufacturing Technology.15 (4):238–243.doi:10.1007/s001700050062.S2CID 109908427.
  3. ^As opposed to the preceding statement, this fact is not obvious: see p. 363 inHaar (1910).
  4. ^Vidakovic, Brani (2010).Statistical Modeling by Wavelets. Wiley Series in Probability and Statistics (2 ed.). pp. 60, 63.doi:10.1002/9780470317020.ISBN 9780470317020.
  5. ^p. 361 inHaar (1910)
  6. ^absee p. 3 inJ. Lindenstrauss, L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete92, Berlin: Springer-Verlag,ISBN 3-540-08072-4.
  7. ^The result is due toR. E. Paley,A remarkable series of orthogonal functions (I), Proc. London Math. Soc.34 (1931) pp. 241-264. See also p. 155 in J. Lindenstrauss, L. Tzafriri, (1979), "Classical Banach spaces II, Function spaces". Ergebnisse der Mathematik und ihrer Grenzgebiete97, Berlin: Springer-Verlag,ISBN 3-540-08888-1.
  8. ^"Orthogonal system",Encyclopedia of Mathematics,EMS Press, 2001 [1994]
  9. ^Walter, Gilbert G.; Shen, Xiaoping (2001).Wavelets and Other Orthogonal Systems. Boca Raton: Chapman.ISBN 1-58488-227-1.
  10. ^see for example p. 66 inJ. Lindenstrauss, L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete92, Berlin: Springer-Verlag,ISBN 3-540-08072-4.
  11. ^Faber, Georg (1910), "Über die Orthogonalfunktionen des Herrn Haar",Deutsche Math.-Ver (in German)19: 104–112.ISSN 0012-0456;http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN37721857X ;http://resolver.sub.uni-goettingen.de/purl?GDZPPN002122553
  12. ^Schauder, Juliusz (1928), "Eine Eigenschaft des Haarschen Orthogonalsystems",Mathematische Zeitschrift28: 317–320.
  13. ^Golubov, B.I. (2001) [1994],"Faber–Schauder system",Encyclopedia of Mathematics,EMS Press
  14. ^see Z. Ciesielski,Properties of the orthonormal Franklin system. Studia Math. 23 1963 141–157.
  15. ^Franklin system. B.I. Golubov (originator), Encyclopedia of Mathematics. URL:http://www.encyclopediaofmath.org/index.php?title=Franklin_system&oldid=16655
  16. ^Philip Franklin,A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529.doi:10.1007/BF01448860
  17. ^abS. V. Bočkarev,Existence of a basis in the space of functions analytic in the disc, and some properties of Franklin's system. Mat. Sb.95 (1974), 3–18 (Russian). Translated in Math. USSR-Sb.24 (1974), 1–16.
  18. ^The question appears p. 238, §3 in Banach's book,Banach, Stefan (1932),Théorie des opérations linéaires, Monografie Matematyczne, vol. 1, Warszawa: Subwencji Funduszu Kultury Narodowej,Zbl 0005.20901. The disk algebraA(D) appears as Example 10, p. 12 in Banach's book.
  19. ^abSee p. 161, III.D.20 and p. 192, III.E.17 inWojtaszczyk, Przemysław (1991),Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge: Cambridge University Press, pp. xiv+382,ISBN 0-521-35618-0
  20. ^Ruch, David K.; Van Fleet, Patrick J. (2009).Wavelet Theory: An Elementary Approach with Applications. John Wiley & Sons.ISBN 978-0-470-38840-2.
  21. ^"haar". Fourier.eng.hmc.edu. 30 October 2013. Archived fromthe original on 21 August 2012. Retrieved23 November 2013.
  22. ^The Haar Transform

References

edit

External links

edit
Wikimedia Commons has media related toHaar wavelet.

Haar transform

edit

[8]ページ先頭

©2009-2025 Movatter.jp