Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Gamma function

This article uses technical mathematical notation for logarithms. All instances oflog(x) without a subscript base should be interpreted as anatural logarithm, also commonly written asln(x) orloge(x).
For the gamma function of ordinals, seeVeblen function. For the gamma distribution in statistics, seeGamma distribution. For the function used in video and image color representations, seeGamma correction.

Inmathematics, thegamma function (represented by Γ, capitalGreek lettergamma) is the most common extension of thefactorial function tocomplex numbers. Derived byDaniel Bernoulli, the gamma functionΓ(z){\displaystyle \Gamma (z)} is defined for all complex numbersz{\displaystyle z} except non-positive integers, and for everypositive integerz=n{\displaystyle z=n},Γ(n)=(n1)!.{\displaystyle \Gamma (n)=(n-1)!\,.}The gamma function can be defined via a convergentimproper integral for complex numbers with positive real part:

Gamma
The gamma function along part of the real axis
General information
General definitionΓ(z)=0tz1etdt{\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,dt}
Fields of applicationCalculus, mathematical analysis, statistics, physics

Γ(z)=0tz1et dt, (z)>0.{\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}{\text{ d}}t,\ \qquad \Re (z)>0\,.}The gamma function then is defined in the complex plane as theanalytic continuation of this integral function: it is ameromorphic function which isholomorphic except at zero and the negative integers, where it has simplepoles.

The gamma function has no zeros, so thereciprocal gamma function1/Γ(z) is anentire function. In fact, the gamma function corresponds to theMellin transform of the negativeexponential function:

Γ(z)=M{ex}(z).{\displaystyle \Gamma (z)={\mathcal {M}}\{e^{-x}\}(z)\,.}

Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It appears as a factor in various probability-distribution functions and other formulas in the fields ofprobability,statistics,analytic number theory, andcombinatorics.

Contents

Motivation

edit
 
Γ(x+1){\displaystyle \Gamma (x+1)}  interpolates the factorial function to non-integer values.

The gamma function can be seen as a solution to theinterpolation problem of finding asmooth curvey=f(x){\displaystyle y=f(x)}  that connects the points of the factorial sequence:(x,y)=(n,n!){\displaystyle (x,y)=(n,n!)}  for all positive integer values ofn{\displaystyle n} . The simple formula for the factorial,x! = 1 × 2 × ⋯ ×x is only valid whenx is a positive integer, and noelementary function has this property, but a good solution is the gamma functionf(x)=Γ(x+1){\displaystyle f(x)=\Gamma (x+1)} .[1]

The gamma function is not only smooth butanalytic (except at the non-positive integers), and it can be defined in several explicit ways. However, it is not the only analytic function that extends the factorial, as one may add any analytic function that is zero on the positive integers, such asksin(mπx){\displaystyle k\sin(m\pi x)}  for an integerm{\displaystyle m} .[1] Such a function is known as apseudogamma function, the most famous being theHadamard function.[2]

 
The gamma function,Γ(z) in blue, plotted along withΓ(z) + sin(πz) in green. Notice the intersection at positive integers. Both are valid extensions of the factorials to a meromorphic function on the complex plane.

A more restrictive requirement is thefunctional equation which interpolates the shifted factorialf(n)=(n1)!{\displaystyle f(n)=(n{-}1)!}  :[3][4]f(x+1)=xf(x)  for all x>0,f(1)=1.{\displaystyle f(x+1)=xf(x)\ {\text{ for all }}x>0,\qquad f(1)=1.} 

But this still does not give a unique solution, since it allows for multiplication by any periodic functiong(x){\displaystyle g(x)}  withg(x)=g(x+1){\displaystyle g(x)=g(x+1)}  andg(0)=1{\displaystyle g(0)=1} , such asg(x)=eksin(mπx){\displaystyle g(x)=e^{k\sin(m\pi x)}} .

One way to resolve the ambiguity is theBohr–Mollerup theorem, which shows thatf(x)=Γ(x){\displaystyle f(x)=\Gamma (x)}  is the unique interpolating function for the factorial, defined over the positive reals, which islogarithmically convex,[5] meaning thaty=logf(x){\displaystyle y=\log f(x)}  isconvex.[6]

Definition

edit

Main definition

edit

The notationΓ(z){\displaystyle \Gamma (z)}  is due toLegendre.[1] If the real part of the complex number z is strictly positive ((z)>0{\displaystyle \Re (z)>0} ), then theintegralΓ(z)=0tz1etdt{\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,dt} converges absolutely, and is known as theEuler integral of the second kind. (Euler's integral of the first kind is thebeta function.[1]) Usingintegration by parts, one sees that:

 
Absolute value (vertical) and argument (color) of the gamma function on the complex plane

Γ(z+1)=0tzetdt=[tzet]0+0ztz1etdt=limt(tzet)(0ze0)+z0tz1etdt.{\displaystyle {\begin{aligned}\Gamma (z+1)&=\int _{0}^{\infty }t^{z}e^{-t}\,dt\\&={\Bigl [}-t^{z}e^{-t}{\Bigr ]}_{0}^{\infty }+\int _{0}^{\infty }zt^{z-1}e^{-t}\,dt\\&=\lim _{t\to \infty }\left(-t^{z}e^{-t}\right)-\left(-0^{z}e^{-0}\right)+z\int _{0}^{\infty }t^{z-1}e^{-t}\,dt.\end{aligned}}} 

Recognizing thattzet0{\displaystyle -t^{z}e^{-t}\to 0}  ast,{\displaystyle t\to \infty ,} Γ(z+1)=z0tz1etdt=zΓ(z).{\displaystyle {\begin{aligned}\Gamma (z+1)&=z\int _{0}^{\infty }t^{z-1}e^{-t}\,dt\\&=z\Gamma (z).\end{aligned}}} 

ThenΓ(1){\displaystyle \Gamma (1)}  can be calculated as:Γ(1)=0t11etdt=0etdt=1.{\displaystyle {\begin{aligned}\Gamma (1)&=\int _{0}^{\infty }t^{1-1}e^{-t}\,dt\\&=\int _{0}^{\infty }e^{-t}\,dt\\&=1.\end{aligned}}} 

Thus we can show thatΓ(n)=(n1)!{\displaystyle \Gamma (n)=(n-1)!}  for any positive integern byinduction. Specifically, the base case is thatΓ(1)=1=0!{\displaystyle \Gamma (1)=1=0!} , and the induction step is thatΓ(n+1)=nΓ(n)=n(n1)!=n!.{\displaystyle \Gamma (n+1)=n\Gamma (n)=n(n-1)!=n!.} 

The identityΓ(z)=Γ(z+1)z{\textstyle \Gamma (z)={\frac {\Gamma (z+1)}{z}}}  can be used (or, yielding the same result,analytic continuation can be used) to uniquely extend the integral formulation forΓ(z){\displaystyle \Gamma (z)}  to ameromorphic function defined for all complex numbersz, except integers less than or equal to zero.[1] It is this extended version that is commonly referred to as the gamma function.[1]

Alternative definitions

edit

There are many equivalent definitions.

Euler's definition as an infinite product

edit

For a fixed integerm{\displaystyle m} , as the integern{\displaystyle n}  increases, we have that[7]limnn!(n+1)m(n+m)!=1.{\displaystyle \lim _{n\to \infty }{\frac {n!\,\left(n+1\right)^{m}}{(n+m)!}}=1\,.} 

Ifm{\displaystyle m}  is not an integer then this equation is meaningless since, in this section, the factorial of a non-integer has not been defined yet. However, let us assume that this equation continues to hold whenm{\displaystyle m}  is replaced by an arbitrary complex numberz{\displaystyle z} , in order to define the Gamma function for non-integers:

limnn!(n+1)z(n+z)!=1.{\displaystyle \lim _{n\to \infty }{\frac {n!\,\left(n+1\right)^{z}}{(n+z)!}}=1\,.} Multiplying both sides by(z1)!{\displaystyle (z-1)!}  gives(z1)!=1zlimnn!z!(n+z)!(n+1)z=1zlimn(12n)1(1+z)(n+z)(2132n+1n)z=1zn=1[11+zn(1+1n)z].{\displaystyle {\begin{aligned}(z-1)!&={\frac {1}{z}}\lim _{n\to \infty }n!{\frac {z!}{(n+z)!}}(n+1)^{z}\\[8pt]&={\frac {1}{z}}\lim _{n\to \infty }(1\cdot 2\cdots n){\frac {1}{(1+z)\cdots (n+z)}}\left({\frac {2}{1}}\cdot {\frac {3}{2}}\cdots {\frac {n+1}{n}}\right)^{z}\\[8pt]&={\frac {1}{z}}\prod _{n=1}^{\infty }\left[{\frac {1}{1+{\frac {z}{n}}}}\left(1+{\frac {1}{n}}\right)^{z}\right].\end{aligned}}} Thisinfinite product, which is due to Euler,[8] converges for all complex numbersz{\displaystyle z}  except the non-positive integers, which fail because of a division by zero. In fact, the above assumption produces a unique definition ofΓ(z){\displaystyle \Gamma (z)}  as(z1)!{\displaystyle (z-1)!} .

Intuitively, this formula indicates thatΓ(z){\displaystyle \Gamma (z)}  is approximately the result of computingΓ(n+1)=n!{\displaystyle \Gamma (n+1)=n!}  for some large integern{\displaystyle n} , multiplying by(n+1)z{\displaystyle (n+1)^{z}}  to approximateΓ(n+z+1){\displaystyle \Gamma (n+z+1)} , and then using the relationshipΓ(x+1)=xΓ(x){\displaystyle \Gamma (x+1)=x\Gamma (x)}  backwardsn+1{\displaystyle n+1}  times to get an approximation forΓ(z){\displaystyle \Gamma (z)} ; and furthermore that this approximation becomes exact asn{\displaystyle n}  increases to infinity.

The infinite product for thereciprocal1Γ(z)=zn=1[(1+zn)/(1+1n)z]{\displaystyle {\frac {1}{\Gamma (z)}}=z\prod _{n=1}^{\infty }\left[\left(1+{\frac {z}{n}}\right)/{\left(1+{\frac {1}{n}}\right)^{z}}\right]} is anentire function, converging for every complex numberz.

Weierstrass's definition

edit

The definition for the gamma function due toWeierstrass is also valid for all complex numbers z{\displaystyle z}  except non-positive integers:Γ(z)=eγzzn=1(1+zn)1ez/n,{\displaystyle \Gamma (z)={\frac {e^{-\gamma z}}{z}}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)^{-1}e^{z/n},} whereγ0.577216{\displaystyle \gamma \approx 0.577216}  is theEuler–Mascheroni constant.[1] This is theHadamard product of1/Γ(z){\displaystyle 1/\Gamma (z)}  in a rewritten form.

Proof of equivalence of the three definitions

Equivalence of the integral definition and Weierstrass definition

By the integral definition, the relationΓ(z+1)=zΓ(z){\displaystyle \Gamma (z+1)=z\Gamma (z)}  andHadamard factorization theorem,1Γ(z)=zec1z+c2n=1ezn(1+zn){\displaystyle {\frac {1}{\Gamma (z)}}=ze^{c_{1}z+c_{2}}\prod _{n=1}^{\infty }e^{-{\frac {z}{n}}}\left(1+{\frac {z}{n}}\right)} for some constantsc1,c2{\displaystyle c_{1},c_{2}}  since1/Γ{\displaystyle 1/\Gamma }  is an entire function of order1{\displaystyle 1} . SincezΓ(z)1{\displaystyle z\Gamma (z)\to 1}  asz0{\displaystyle z\to 0} ,c2=0{\displaystyle c_{2}=0}  (or an integer multiple of2πi{\displaystyle 2\pi i} ) and sinceΓ(1)=1{\displaystyle \Gamma (1)=1} ,ec1=n=1e1n(1+1n)=exp(limNn=1N(log(1+1n)1n))=exp(limN(log(N+1)n=1N1n)).{\displaystyle {\begin{aligned}e^{-c_{1}}&=\prod _{n=1}^{\infty }e^{-{\frac {1}{n}}}\left(1+{\frac {1}{n}}\right)\\&=\exp \left(\lim _{N\to \infty }\sum _{n=1}^{N}\left(\log \left(1+{\frac {1}{n}}\right)-{\frac {1}{n}}\right)\right)\\&=\exp \left(\lim _{N\to \infty }\left(\log(N+1)-\sum _{n=1}^{N}{\frac {1}{n}}\right)\right).\end{aligned}}} 

wherec1=γ+2πik{\displaystyle c_{1}=\gamma +2\pi ik}  for some integerk{\displaystyle k} . SinceΓ(z)R{\displaystyle \Gamma (z)\in \mathbb {R} }  forzRZ0{\displaystyle z\in \mathbb {R} \setminus \mathbb {Z} _{0}^{-}} , we havek=0{\displaystyle k=0}  and1Γ(z)=zeγzn=1ezn(1+zn){\displaystyle {\frac {1}{\Gamma (z)}}=ze^{\gamma z}\prod _{n=1}^{\infty }e^{-{\frac {z}{n}}}\left(1+{\frac {z}{n}}\right)} 

Equivalence of the Weierstrass definition and Euler definition

Γ(z)=eγzzn=1(1+zn)1ez/n=1zlimnez(log(n+1)112131n)ez(1+12+13++1n)(1+z)(1+z2)(1+zn)=1zlimn1(1+z)(1+z2)(1+zn)ezlog(n+1)=limnn!(n+1)zz(z+1)(z+n),zCZ0{\displaystyle {\begin{aligned}\Gamma (z)&={\frac {e^{-\gamma z}}{z}}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)^{-1}e^{z/n}\\&={\frac {1}{z}}\lim _{n\to \infty }e^{z\left(\log(n+1)-1-{\frac {1}{2}}-{\frac {1}{3}}-\cdots -{\frac {1}{n}}\right)}{\frac {e^{z\left(1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}\right)}}{\left(1+z\right)\left(1+{\frac {z}{2}}\right)\cdots \left(1+{\frac {z}{n}}\right)}}\\&={\frac {1}{z}}\lim _{n\to \infty }{\frac {1}{\left(1+z\right)\left(1+{\frac {z}{2}}\right)\cdots \left(1+{\frac {z}{n}}\right)}}e^{z\log \left(n+1\right)}\\&=\lim _{n\to \infty }{\frac {n!(n+1)^{z}}{z(z+1)\cdots (z+n)}},\quad z\in \mathbb {C} \setminus \mathbb {Z} _{0}^{-}\end{aligned}}} 

Properties

edit

General

edit

Besides the fundamental property discussed above:Γ(z+1)=z Γ(z){\displaystyle \Gamma (z+1)=z\ \Gamma (z)} other important functional equations for the gamma function areEuler's reflection formulaΓ(1z)Γ(z)=πsinπz,zZ{\displaystyle \Gamma (1-z)\Gamma (z)={\frac {\pi }{\sin \pi z}},\qquad z\not \in \mathbb {Z} } which impliesΓ(zn)=(1)n1Γ(z)Γ(1+z)Γ(n+1z),nZ{\displaystyle \Gamma (z-n)=(-1)^{n-1}\;{\frac {\Gamma (-z)\Gamma (1+z)}{\Gamma (n+1-z)}},\qquad n\in \mathbb {Z} } and theLegendre duplication formulaΓ(z)Γ(z+12)=212zπΓ(2z).{\displaystyle \Gamma (z)\Gamma \left(z+{\tfrac {1}{2}}\right)=2^{1-2z}\;{\sqrt {\pi }}\;\Gamma (2z).} 

Derivation of Euler's reflection formula

Proof 1

With Euler's infinite productΓ(z)=1zn=1(1+1/n)z1+z/n{\displaystyle \Gamma (z)={\frac {1}{z}}\prod _{n=1}^{\infty }{\frac {(1+1/n)^{z}}{1+z/n}}}  compute1Γ(1z)Γ(z)=1(z)Γ(z)Γ(z)=zn=1(1z/n)(1+z/n)(1+1/n)z(1+1/n)z=zn=1(1z2n2)=sinπzπ,{\displaystyle {\frac {1}{\Gamma (1-z)\Gamma (z)}}={\frac {1}{(-z)\Gamma (-z)\Gamma (z)}}=z\prod _{n=1}^{\infty }{\frac {(1-z/n)(1+z/n)}{(1+1/n)^{-z}(1+1/n)^{z}}}=z\prod _{n=1}^{\infty }\left(1-{\frac {z^{2}}{n^{2}}}\right)={\frac {\sin \pi z}{\pi }}\,,} where the last equality is aknown result. A similar derivation begins with Weierstrass's definition.

Proof 2

First prove thatI=eax1+exdx=0va11+vdv=πsinπa,a(0,1).{\displaystyle I=\int _{-\infty }^{\infty }{\frac {e^{ax}}{1+e^{x}}}\,dx=\int _{0}^{\infty }{\frac {v^{a-1}}{1+v}}\,dv={\frac {\pi }{\sin \pi a}},\quad a\in (0,1).} Consider the positively oriented rectangular contourCR{\displaystyle C_{R}}  with vertices atR{\displaystyle R} ,R{\displaystyle -R} ,R+2πi{\displaystyle R+2\pi i}  andR+2πi{\displaystyle -R+2\pi i}  whereRR+{\displaystyle R\in \mathbb {R} ^{+}} . Then by theresidue theorem,CReaz1+ezdz=2πieaπi.{\displaystyle \int _{C_{R}}{\frac {e^{az}}{1+e^{z}}}\,dz=-2\pi ie^{a\pi i}.} LetIR=RReax1+exdx{\displaystyle I_{R}=\int _{-R}^{R}{\frac {e^{ax}}{1+e^{x}}}\,dx} and letIR{\displaystyle I_{R}'}  be the analogous integral over the top side of the rectangle. ThenIRI{\displaystyle I_{R}\to I}  asR{\displaystyle R\to \infty }  andIR=e2πiaIR{\displaystyle I_{R}'=-e^{2\pi ia}I_{R}} . IfAR{\displaystyle A_{R}}  denotes the right vertical side of the rectangle, then|AReaz1+ezdz|02π|ea(R+it)1+eR+it|dtCe(a1)R{\displaystyle \left|\int _{A_{R}}{\frac {e^{az}}{1+e^{z}}}\,dz\right|\leq \int _{0}^{2\pi }\left|{\frac {e^{a(R+it)}}{1+e^{R+it}}}\right|\,dt\leq Ce^{(a-1)R}} for some constantC{\displaystyle C}  and sincea<1{\displaystyle a<1} , the integral tends to0{\displaystyle 0}  asR{\displaystyle R\to \infty } . Analogously, the integral over the left vertical side of the rectangle tends to0{\displaystyle 0}  asR{\displaystyle R\to \infty } . ThereforeIe2πiaI=2πieaπi,{\displaystyle I-e^{2\pi ia}I=-2\pi ie^{a\pi i},} from whichI=πsinπa,a(0,1).{\displaystyle I={\frac {\pi }{\sin \pi a}},\quad a\in (0,1).} ThenΓ(1z)=0euuzdu=t0evt(vt)zdv,t>0{\displaystyle \Gamma (1-z)=\int _{0}^{\infty }e^{-u}u^{-z}\,du=t\int _{0}^{\infty }e^{-vt}(vt)^{-z}\,dv,\quad t>0} andΓ(z)Γ(1z)=00et(1+v)vzdvdt=0vz1+vdv=πsinπ(1z)=πsinπz,z(0,1).{\displaystyle {\begin{aligned}\Gamma (z)\Gamma (1-z)&=\int _{0}^{\infty }\int _{0}^{\infty }e^{-t(1+v)}v^{-z}\,dv\,dt\\&=\int _{0}^{\infty }{\frac {v^{-z}}{1+v}}\,dv\\&={\frac {\pi }{\sin \pi (1-z)}}\\&={\frac {\pi }{\sin \pi z}},\quad z\in (0,1).\end{aligned}}} Proving the reflection formula for allz(0,1){\displaystyle z\in (0,1)}  proves it for allzCZ{\displaystyle z\in \mathbb {C} \setminus \mathbb {Z} }  by analytic continuation.

Derivation of the Legendre duplication formula

Thebeta function can be represented asB(z1,z2)=Γ(z1)Γ(z2)Γ(z1+z2)=01tz11(1t)z21dt.{\displaystyle \mathrm {B} (z_{1},z_{2})={\frac {\Gamma (z_{1})\Gamma (z_{2})}{\Gamma (z_{1}+z_{2})}}=\int _{0}^{1}t^{z_{1}-1}(1-t)^{z_{2}-1}\,dt.} 

Settingz1=z2=z{\displaystyle z_{1}=z_{2}=z}  yieldsΓ2(z)Γ(2z)=01tz1(1t)z1dt.{\displaystyle {\frac {\Gamma ^{2}(z)}{\Gamma (2z)}}=\int _{0}^{1}t^{z-1}(1-t)^{z-1}\,dt.} 

After the substitutiont=1+u2{\displaystyle t={\frac {1+u}{2}}} :Γ2(z)Γ(2z)=122z111(1u2)z1du.{\displaystyle {\frac {\Gamma ^{2}(z)}{\Gamma (2z)}}={\frac {1}{2^{2z-1}}}\int _{-1}^{1}\left(1-u^{2}\right)^{z-1}\,du.} 

The function(1u2)z1{\displaystyle (1-u^{2})^{z-1}}  is even, hence22z1Γ2(z)=2Γ(2z)01(1u2)z1du.{\displaystyle 2^{2z-1}\Gamma ^{2}(z)=2\Gamma (2z)\int _{0}^{1}(1-u^{2})^{z-1}\,du.} 

NowB(12,z)=01t121(1t)z1dt,t=s2.{\displaystyle \mathrm {B} \left({\frac {1}{2}},z\right)=\int _{0}^{1}t^{{\frac {1}{2}}-1}(1-t)^{z-1}\,dt,\quad t=s^{2}.} 

ThenB(12,z)=201(1s2)z1ds=201(1u2)z1du.{\displaystyle \mathrm {B} \left({\frac {1}{2}},z\right)=2\int _{0}^{1}(1-s^{2})^{z-1}\,ds=2\int _{0}^{1}(1-u^{2})^{z-1}\,du.} 

This implies22z1Γ2(z)=Γ(2z)B(12,z).{\displaystyle 2^{2z-1}\Gamma ^{2}(z)=\Gamma (2z)\mathrm {B} \left({\frac {1}{2}},z\right).} 

SinceB(12,z)=Γ(12)Γ(z)Γ(z+12),Γ(12)=π,{\displaystyle \mathrm {B} \left({\frac {1}{2}},z\right)={\frac {\Gamma \left({\frac {1}{2}}\right)\Gamma (z)}{\Gamma \left(z+{\frac {1}{2}}\right)}},\quad \Gamma \left({\frac {1}{2}}\right)={\sqrt {\pi }},} the Legendre duplication formula follows:Γ(z)Γ(z+12)=212zπΓ(2z).{\displaystyle \Gamma (z)\Gamma \left(z+{\frac {1}{2}}\right)=2^{1-2z}{\sqrt {\pi }}\;\Gamma (2z).} 

The duplication formula is a special case of themultiplication theorem (see [9] Eq. 5.5.6):k=0m1Γ(z+km)=(2π)m12m12mzΓ(mz).{\displaystyle \prod _{k=0}^{m-1}\Gamma \left(z+{\frac {k}{m}}\right)=(2\pi )^{\frac {m-1}{2}}\;m^{{\frac {1}{2}}-mz}\;\Gamma (mz).} 

A simple but useful property, which can be seen from the limit definition, is:Γ(z)¯=Γ(z¯)Γ(z)Γ(z¯)R.{\displaystyle {\overline {\Gamma (z)}}=\Gamma ({\overline {z}})\;\Rightarrow \;\Gamma (z)\Gamma ({\overline {z}})\in \mathbb {R} .} 

In particular, withz =a +bi, this product is|Γ(a+bi)|2=|Γ(a)|2k=011+b2(a+k)2{\displaystyle |\Gamma (a+bi)|^{2}=|\Gamma (a)|^{2}\prod _{k=0}^{\infty }{\frac {1}{1+{\frac {b^{2}}{(a+k)^{2}}}}}} 

If the real part is an integer or a half-integer, this can be finitely expressed inclosed form:|Γ(bi)|2=πbsinhπb|Γ(12+bi)|2=πcoshπb|Γ(1+bi)|2=πbsinhπb|Γ(1+n+bi)|2=πbsinhπbk=1n(k2+b2),nN|Γ(n+bi)|2=πbsinhπbk=1n(k2+b2)1,nN|Γ(12±n+bi)|2=πcoshπbk=1n((k12)2+b2)±1,nN{\displaystyle {\begin{aligned}|\Gamma (bi)|^{2}&={\frac {\pi }{b\sinh \pi b}}\\[1ex]\left|\Gamma \left({\tfrac {1}{2}}+bi\right)\right|^{2}&={\frac {\pi }{\cosh \pi b}}\\[1ex]\left|\Gamma \left(1+bi\right)\right|^{2}&={\frac {\pi b}{\sinh \pi b}}\\[1ex]\left|\Gamma \left(1+n+bi\right)\right|^{2}&={\frac {\pi b}{\sinh \pi b}}\prod _{k=1}^{n}\left(k^{2}+b^{2}\right),\quad n\in \mathbb {N} \\[1ex]\left|\Gamma \left(-n+bi\right)\right|^{2}&={\frac {\pi }{b\sinh \pi b}}\prod _{k=1}^{n}\left(k^{2}+b^{2}\right)^{-1},\quad n\in \mathbb {N} \\[1ex]\left|\Gamma \left({\tfrac {1}{2}}\pm n+bi\right)\right|^{2}&={\frac {\pi }{\cosh \pi b}}\prod _{k=1}^{n}\left(\left(k-{\tfrac {1}{2}}\right)^{2}+b^{2}\right)^{\pm 1},\quad n\in \mathbb {N} \\[-1ex]&\end{aligned}}} 

Proof of absolute value formulas for arguments of integer or half-integer real part

First, consider the reflection formula applied toz=bi{\displaystyle z=bi} .Γ(bi)Γ(1bi)=πsinπbi{\displaystyle \Gamma (bi)\Gamma (1-bi)={\frac {\pi }{\sin \pi bi}}} Applying the recurrence relation to the second term:biΓ(bi)Γ(bi)=πsinπbi{\displaystyle -bi\cdot \Gamma (bi)\Gamma (-bi)={\frac {\pi }{\sin \pi bi}}} which with simple rearrangement givesΓ(bi)Γ(bi)=πbisinπbi=πbsinhπb{\displaystyle \Gamma (bi)\Gamma (-bi)={\frac {\pi }{-bi\sin \pi bi}}={\frac {\pi }{b\sinh \pi b}}} 

Second, consider the reflection formula applied toz=12+bi{\displaystyle z={\tfrac {1}{2}}+bi} .Γ(12+bi)Γ(1(12+bi))=Γ(12+bi)Γ(12bi)=πsinπ(12+bi)=πcosπbi=πcoshπb{\displaystyle \Gamma ({\tfrac {1}{2}}+bi)\Gamma \left(1-({\tfrac {1}{2}}+bi)\right)=\Gamma ({\tfrac {1}{2}}+bi)\Gamma ({\tfrac {1}{2}}-bi)={\frac {\pi }{\sin \pi ({\tfrac {1}{2}}+bi)}}={\frac {\pi }{\cos \pi bi}}={\frac {\pi }{\cosh \pi b}}} 

Formulas for other values ofz{\displaystyle z}  for which the real part is integer or half-integer quickly follow byinduction using the recurrence relation in the positive and negative directions.

Perhaps the best-known value of the gamma function at a non-integer argument isΓ(12)=π,{\displaystyle \Gamma \left({\tfrac {1}{2}}\right)={\sqrt {\pi }},} which can be found by settingz=12{\textstyle z={\frac {1}{2}}}  in the reflection formula, by using the relation to thebeta function given below withz1=z2=12{\textstyle z_{1}=z_{2}={\frac {1}{2}}} , or simply by making the substitutiont=u2{\displaystyle t=u^{2}}  in the integral definition of the gamma function, resulting in aGaussian integral. In general, for non-negative integer values ofn{\displaystyle n}  we have:Γ(12+n)=(2n)!4nn!π=(2n1)!!2nπ=(n12n)n!πΓ(12n)=(4)nn!(2n)!π=(2)n(2n1)!!π=π(1/2n)n!{\displaystyle {\begin{aligned}\Gamma \left({\tfrac {1}{2}}+n\right)&={(2n)! \over 4^{n}n!}{\sqrt {\pi }}={\frac {(2n-1)!!}{2^{n}}}{\sqrt {\pi }}={\binom {n-{\frac {1}{2}}}{n}}n!{\sqrt {\pi }}\\[8pt]\Gamma \left({\tfrac {1}{2}}-n\right)&={(-4)^{n}n! \over (2n)!}{\sqrt {\pi }}={\frac {(-2)^{n}}{(2n-1)!!}}{\sqrt {\pi }}={\frac {\sqrt {\pi }}{{\binom {-1/2}{n}}n!}}\end{aligned}}} where thedouble factorial(2n1)!!=(2n1)(2n3)(3)(1){\displaystyle (2n-1)!!=(2n-1)(2n-3)\cdots (3)(1)} . SeeParticular values of the gamma function for calculated values.

It might be tempting to generalize the result thatΓ(12)=π{\textstyle \Gamma \left({\frac {1}{2}}\right)={\sqrt {\pi }}}  by looking for a formula for other individual valuesΓ(r){\displaystyle \Gamma (r)}  wherer{\displaystyle r}  is rational, especially because according toGauss's digamma theorem, it is possible to do so for the closely relateddigamma function at every rational value. However, these numbersΓ(r){\displaystyle \Gamma (r)}  are not known to be expressible by themselves in terms of elementary functions. It has been proved thatΓ(n+r){\displaystyle \Gamma (n+r)}  is atranscendental number andalgebraically independent ofπ{\displaystyle \pi }  for any integern{\displaystyle n}  and each of the fractionsr=16,14,13,23,34,56{\textstyle r={\frac {1}{6}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{3}},{\frac {3}{4}},{\frac {5}{6}}} .[10] In general, when computing values of the gamma function, we must settle for numerical approximations.

The derivatives of the gamma function are described in terms of thepolygamma functionψ(0)(z):Γ(z)=Γ(z)ψ(0)(z).{\displaystyle \Gamma '(z)=\Gamma (z)\psi ^{(0)}(z).} For a positive integer m the derivative of the gamma function can be calculated as follows:

 
Colors showing the argument of the gamma function in the complex plane from−2 − 2i to6 + 2i

Γ(m+1)=m!(γ+k=1m1k)=m!(γ+H(m)),{\displaystyle \Gamma '(m+1)=m!\left(-\gamma +\sum _{k=1}^{m}{\frac {1}{k}}\right)=m!\left(-\gamma +H(m)\right)\,,} where H(m) is the mthharmonic number andγ is theEuler–Mascheroni constant.

For(z)>0{\displaystyle \Re (z)>0}  then{\displaystyle n} th derivative of the gamma function is:dndznΓ(z)=0tz1et(logt)ndt.{\displaystyle {\frac {d^{n}}{dz^{n}}}\Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}(\log t)^{n}\,dt.} (This can be derived by differentiating the integral form of the gamma function with respect toz{\displaystyle z} , and using the technique ofdifferentiation under the integral sign.)

Using the identityΓ(n)(1)=(1)nBn(γ,1!ζ(2),,(n1)!ζ(n)){\displaystyle \Gamma ^{(n)}(1)=(-1)^{n}B_{n}(\gamma ,1!\zeta (2),\ldots ,(n-1)!\zeta (n))} whereζ(z){\displaystyle \zeta (z)}  is theRiemann zeta function, andBn{\displaystyle B_{n}}  is then{\displaystyle n} -thBell polynomial, we have in particular theLaurent series expansion of the gamma function[11]Γ(z)=1zγ+12(γ2+π26)z16(γ3+γπ22+2ζ(3))z2+O(z3).{\displaystyle \Gamma (z)={\frac {1}{z}}-\gamma +{\frac {1}{2}}\left(\gamma ^{2}+{\frac {\pi ^{2}}{6}}\right)z-{\frac {1}{6}}\left(\gamma ^{3}+{\frac {\gamma \pi ^{2}}{2}}+2\zeta (3)\right)z^{2}+O(z^{3}).} 

Inequalities

edit

When restricted to the positive real numbers, the gamma function is a strictlylogarithmically convex function. This property may be stated in any of the following three equivalent ways:

The last of these statements is, essentially by definition, the same as the statement thatψ(1)(x)>0{\displaystyle \psi ^{(1)}(x)>0} , whereψ(1){\displaystyle \psi ^{(1)}}  is thepolygamma function of order 1. To prove the logarithmic convexity of the gamma function, it therefore suffices to observe thatψ(1){\displaystyle \psi ^{(1)}}  has a series representation which, for positive realx, consists of only positive terms.

Logarithmic convexity andJensen's inequality together imply, for any positive real numbersx1,,xn{\displaystyle x_{1},\ldots ,x_{n}}  anda1,,an{\displaystyle a_{1},\ldots ,a_{n}} ,Γ(a1x1++anxna1++an)(Γ(x1)a1Γ(xn)an)1a1++an.{\displaystyle \Gamma \left({\frac {a_{1}x_{1}+\cdots +a_{n}x_{n}}{a_{1}+\cdots +a_{n}}}\right)\leq {\bigl (}\Gamma (x_{1})^{a_{1}}\cdots \Gamma (x_{n})^{a_{n}}{\bigr )}^{\frac {1}{a_{1}+\cdots +a_{n}}}.} 

There are also bounds on ratios of gamma functions. The best-known isGautschi's inequality, which says that for any positive real numberx and anys ∈ (0, 1),x1s<Γ(x+1)Γ(x+s)<(x+1)1s.{\displaystyle x^{1-s}<{\frac {\Gamma (x+1)}{\Gamma (x+s)}}<\left(x+1\right)^{1-s}.} 

Stirling's formula

edit
 
Representation of the gamma function in the complex plane. Each pointz{\displaystyle z}  is colored according to the argument ofΓ(z){\displaystyle \Gamma (z)} . The contour plot of the modulus|Γ(z)|{\displaystyle |\Gamma (z)|}  is also displayed.
 
3-dimensional plot of the absolute value of the complex gamma function

The behavior ofΓ(x){\displaystyle \Gamma (x)}  for an increasing positive real variable is given byStirling's formulaΓ(x+1)2πx(xe)x,{\displaystyle \Gamma (x+1)\sim {\sqrt {2\pi x}}\left({\frac {x}{e}}\right)^{x},} where the symbol{\displaystyle \sim }  means asymptotic convergence: the ratio of the two sides converges to 1 in the limitx+{\textstyle x\to +\infty } .[1] This growth is faster than exponential,exp(βx){\displaystyle \exp(\beta x)} , for any fixed value ofβ{\displaystyle \beta } .

Another useful limit for asymptotic approximations forx+{\displaystyle x\to +\infty }  is:Γ(x+α)Γ(x)xα,αC.{\displaystyle {\Gamma (x+\alpha )}\sim {\Gamma (x)x^{\alpha }},\qquad \alpha \in \mathbb {C} .} 

When writing the error term as an infinite product, Stirling's formula can be used to define the gamma function:[12]Γ(x)=2πx(xe)xn=0[1e(1+1x+n)x+n+12]{\displaystyle \Gamma (x)={\sqrt {\frac {2\pi }{x}}}\left({\frac {x}{e}}\right)^{x}\prod _{n=0}^{\infty }\left[{\frac {1}{e}}\left(1+{\frac {1}{x+n}}\right)^{x+n+{\frac {1}{2}}}\right]} 

Extension to negative, non-integer values

edit

Although the main definition of the gamma function—the Euler integral of the second kind—is only valid (on the real axis) for positive arguments, its domain can be extended withanalytic continuation[13] to negative arguments by shifting the negative argument to positive values by using either the Euler's reflection formula,Γ(x)=1Γ(x+1)πsin(π(x+1)),{\displaystyle \Gamma (-x)={\frac {1}{\Gamma (x+1)}}{\frac {\pi }{\sin {\big (}\pi (x+1){\big )}}},} or the fundamental property,Γ(x):=1xΓ(x+1),{\displaystyle \Gamma (-x):={\frac {1}{-x}}\Gamma (-x+1),} whenxZ{\displaystyle x\not \in \mathbb {Z} } . For example,Γ(12)=2Γ(12).{\displaystyle \Gamma \left(-{\frac {1}{2}}\right)=-2\Gamma \left({\frac {1}{2}}\right).} 

Residues

edit

The behavior for non-positivez{\displaystyle z}  is more intricate. Euler's integral does not converge for(z)0{\displaystyle \Re (z)\leq 0} , but the function it defines in the positive complex half-plane has a uniqueanalytic continuation to the negative half-plane. One way to find that analytic continuation is to use Euler's integral for positive arguments and extend the domain to negative numbers by repeated application of the recurrence formula,[1]Γ(z)=Γ(z+n+1)z(z+1)(z+n),{\displaystyle \Gamma (z)={\frac {\Gamma (z+n+1)}{z(z+1)\cdots (z+n)}},} choosingn{\displaystyle n}  such thatz+n{\displaystyle z+n}  is positive. The product in the denominator is zero whenz{\displaystyle z}  equals any of the integers0,1,2,{\displaystyle 0,-1,-2,\ldots } . Thus, the gamma function must be undefined at those points to avoiddivision by zero; it is ameromorphic function withsimple poles at the non-positive integers.[1]

For a functionf{\displaystyle f}  of a complex variablez{\displaystyle z} , at asimple polec{\displaystyle c} , theresidue off{\displaystyle f}  is given by:Res(f,c)=limzc(zc)f(z).{\displaystyle \operatorname {Res} (f,c)=\lim _{z\to c}(z-c)f(z).} 

For the simple polez=n{\displaystyle z=-n} , the recurrence formula can be rewritten as:(z+n)Γ(z)=Γ(z+n+1)z(z+1)(z+n1).{\displaystyle (z+n)\Gamma (z)={\frac {\Gamma (z+n+1)}{z(z+1)\cdots (z+n-1)}}.} The numerator atz=n,{\displaystyle z=-n,}  isΓ(z+n+1)=Γ(1)=1{\displaystyle \Gamma (z+n+1)=\Gamma (1)=1} and the denominatorz(z+1)(z+n1)=n(1n)(n1n)=(1)nn!.{\displaystyle z(z+1)\cdots (z+n-1)=-n(1-n)\cdots (n-1-n)=(-1)^{n}n!.} So the residues of the gamma function at those points are:[14]Res(Γ,n)=(1)nn!.{\displaystyle \operatorname {Res} (\Gamma ,-n)={\frac {(-1)^{n}}{n!}}.} The gamma function is non-zero everywhere along the real line, although it comes arbitrarily close to zero asz → −∞. There is in fact no complex numberz{\displaystyle z}  for whichΓ(z)=0{\displaystyle \Gamma (z)=0} , and hence thereciprocal gamma function1Γ(z){\textstyle {\frac {1}{\Gamma (z)}}}  is anentire function, with zeros atz=0,1,2,{\displaystyle z=0,-1,-2,\ldots } .[1]

Minima and maxima

edit

On the real line, the gamma function has a local minimum atzmin+1.46163214496836234126[15] where it attains the valueΓ(zmin) ≈+0.88560319441088870027.[16] The gamma function rises to either side of this minimum. The solution toΓ(z − 0.5) = Γ(z + 0.5) isz = +1.5 and the common value isΓ(1) = Γ(2) = +1. The positive solution toΓ(z − 1) = Γ(z + 1) isz =φ ≈ +1.618, thegolden ratio, and the common value isΓ(φ − 1) = Γ(φ + 1) =φ! ≈+1.44922960226989660037.[17]

The gamma function must alternate sign between its poles at the non-positive integers because the product in the forward recurrence contains an odd number of negative factors if the number of poles betweenz{\displaystyle z}  andz+n{\displaystyle z+n}  is odd, and an even number if the number of poles is even.[14] The values at the local extrema of the gamma function along the real axis between the non-positive integers are:

Γ(−0.50408300826445540925...[18]) =−3.54464361115500508912...,
Γ(−1.57349847316239045877...[19]) =2.30240725833968013582...,
Γ(−2.61072086844414465000...[20]) =−0.88813635840124192009...,
Γ(−3.63529336643690109783...[21]) =0.24512753983436625043...,
Γ(−4.65323776174314244171...[22]) =−0.05277963958731940076..., etc.

Integral representations

edit

There are many formulas, besides the Euler integral of the second kind, that express the gamma function as an integral. For instance, when the real part ofz is positive,[23]Γ(z)=eztetdt{\displaystyle \Gamma (z)=\int _{-\infty }^{\infty }e^{zt-e^{t}}\,dt} and[24]Γ(z)=01(log1t)z1dt,{\displaystyle \Gamma (z)=\int _{0}^{1}\left(\log {\frac {1}{t}}\right)^{z-1}\,dt,} Γ(z)=2cz0t2z1ect2dt,c>0{\displaystyle \Gamma (z)=2c^{z}\int _{0}^{\infty }t^{2z-1}e^{-ct^{2}}\,dt\,,\;c>0} where the three integrals respectively follow from the substitutionst=ex{\displaystyle t=e^{-x}} ,t=logx{\displaystyle t=-\log x} [25] andt=cx2{\displaystyle t=cx^{2}} [26] in Euler's second integral. The last integral in particular makes clear the connection between the gamma function at half integer arguments and theGaussian integral: ifz=1/2,c=1{\displaystyle z=1/2,\;c=1}  we getΓ(1/2)=20et2dt=π.{\displaystyle \Gamma (1/2)=2\int _{0}^{\infty }e^{-t^{2}}\,dt={\sqrt {\pi }}\;.} 

Binet's first integral formula for the gamma function states that, when the real part ofz is positive, then:[27]logΓ(z)=(z12)logzz+12log(2π)+0(121t+1et1)etztdt.{\displaystyle \operatorname {log\Gamma } (z)=\left(z-{\frac {1}{2}}\right)\log z-z+{\frac {1}{2}}\log(2\pi )+\int _{0}^{\infty }\left({\frac {1}{2}}-{\frac {1}{t}}+{\frac {1}{e^{t}-1}}\right){\frac {e^{-tz}}{t}}\,dt.} The integral on the right-hand side may be interpreted as aLaplace transform. That is,log(Γ(z)(ez)zz2π)=L(12t1t2+1t(et1))(z).{\displaystyle \log \left(\Gamma (z)\left({\frac {e}{z}}\right)^{z}{\sqrt {\frac {z}{2\pi }}}\right)={\mathcal {L}}\left({\frac {1}{2t}}-{\frac {1}{t^{2}}}+{\frac {1}{t(e^{t}-1)}}\right)(z).} 

Binet's second integral formula states that, again when the real part ofz is positive, then:[28]logΓ(z)=(z12)logzz+12log(2π)+20arctan(t/z)e2πt1dt.{\displaystyle \operatorname {log\Gamma } (z)=\left(z-{\frac {1}{2}}\right)\log z-z+{\frac {1}{2}}\log(2\pi )+2\int _{0}^{\infty }{\frac {\arctan(t/z)}{e^{2\pi t}-1}}\,dt.} 

LetC be aHankel contour, meaning a path that begins and ends at the point on theRiemann sphere, whose unit tangent vector converges to−1 at the start of the path and to1 at the end, which haswinding number 1 around0, and which does not cross[0, ∞). Fix a branch oflog(t){\displaystyle \log(-t)}  by taking a branch cut along[0, ∞) and by takinglog(t){\displaystyle \log(-t)}  to be real whent is on the negative real axis. Assumez is not an integer. Then Hankel's formula for the gamma function is:[29]Γ(z)=12isinπzC(t)z1etdt,{\displaystyle \Gamma (z)=-{\frac {1}{2i\sin \pi z}}\int _{C}(-t)^{z-1}e^{-t}\,dt,} where(t)z1{\displaystyle (-t)^{z-1}}  is interpreted asexp((z1)log(t)){\displaystyle \exp((z-1)\log(-t))} . The reflection formula leads to the closely related expression1Γ(z)=i2πC(t)zetdt,{\displaystyle {\frac {1}{\Gamma (z)}}={\frac {i}{2\pi }}\int _{C}(-t)^{-z}e^{-t}\,dt,} again valid wheneverz is not an integer.

Continued fraction representation

edit

The gamma function can also be represented by a sum of twocontinued fractions:[30][31]Γ(z)=e12+0z+1z12+2z+2z22+4z+3z32+6z+4z42+8z+5z52+10z++ e1z+0z+0z+1+1z+2z+1z+3+2z+4z+2z+5+3z+6{\displaystyle {\begin{aligned}\Gamma (z)&={\cfrac {e^{-1}}{2+0-z+1{\cfrac {z-1}{2+2-z+2{\cfrac {z-2}{2+4-z+3{\cfrac {z-3}{2+6-z+4{\cfrac {z-4}{2+8-z+5{\cfrac {z-5}{2+10-z+\ddots }}}}}}}}}}}}\\&+\ {\cfrac {e^{-1}}{z+0-{\cfrac {z+0}{z+1+{\cfrac {1}{z+2-{\cfrac {z+1}{z+3+{\cfrac {2}{z+4-{\cfrac {z+2}{z+5+{\cfrac {3}{z+6-\ddots }}}}}}}}}}}}}}\end{aligned}}} wherezC{\displaystyle z\in \mathbb {C} } .

Fourier series expansion

edit

Thelogarithm of the gamma function has the followingFourier series expansion for0<z<1:{\displaystyle 0<z<1:} logΓ(z)=(12z)(γ+log2)+(1z)logπ12logsin(πz)+1πn=1lognnsin(2πnz),{\displaystyle \operatorname {log\Gamma } (z)=\left({\frac {1}{2}}-z\right)(\gamma +\log 2)+(1-z)\log \pi -{\frac {1}{2}}\log \sin(\pi z)+{\frac {1}{\pi }}\sum _{n=1}^{\infty }{\frac {\log n}{n}}\sin(2\pi nz),} which was for a long time attributed toErnst Kummer, who derived it in 1847.[32][33] However,Iaroslav Blagouchine discovered thatCarl Johan Malmsten first derived this series in 1842.[34][35]

Raabe's formula

edit

In 1840Joseph Ludwig Raabe proved thataa+1logΓ(z)dz=12log2π+alogaa,a>0.{\displaystyle \int _{a}^{a+1}\log \Gamma (z)\,dz={\tfrac {1}{2}}\log 2\pi +a\log a-a,\quad a>0.} In particular, ifa=0{\displaystyle a=0}  then01logΓ(z)dz=12log2π.{\displaystyle \int _{0}^{1}\log \Gamma (z)\,dz={\tfrac {1}{2}}\log 2\pi .} 

The latter can be derived taking the logarithm in the above multiplication formula, which gives an expression for the Riemann sum of the integrand. Taking the limit fora{\displaystyle a\to \infty }  gives the formula.

Pi function

edit

An alternative notation introduced byGauss is theΠ{\displaystyle \Pi } -function, a shifted version of the gamma function:Π(z)=Γ(z+1)=zΓ(z)=0ettzdt,{\displaystyle \Pi (z)=\Gamma (z+1)=z\Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z}\,dt,} so thatΠ(n)=n!{\displaystyle \Pi (n)=n!}  for every non-negative integern{\displaystyle n} .

Using the pi function, the reflection formula is:Π(z)Π(z)=πzsin(πz)=1sinc(z){\displaystyle \Pi (z)\Pi (-z)={\frac {\pi z}{\sin(\pi z)}}={\frac {1}{\operatorname {sinc} (z)}}} using the normalizedsinc function; while the multiplication theorem becomes:Π(zm)Π(z1m)Π(zm+1m)=(2π)m12mz12Π(z) .{\displaystyle \Pi \left({\frac {z}{m}}\right)\,\Pi \left({\frac {z-1}{m}}\right)\cdots \Pi \left({\frac {z-m+1}{m}}\right)=(2\pi )^{\frac {m-1}{2}}m^{-z-{\frac {1}{2}}}\Pi (z)\ .} 

The shiftedreciprocal gamma function is sometimes denotedπ(z)=1Π(z) ,{\textstyle \pi (z)={\frac {1}{\Pi (z)}}\ ,} anentire function.

Thevolume of ann-ellipsoid with radiir1, …,rn can be expressed asVn(r1,,rn)=πn2Π(n2)k=1nrk.{\displaystyle V_{n}(r_{1},\dotsc ,r_{n})={\frac {\pi ^{\frac {n}{2}}}{\Pi \left({\frac {n}{2}}\right)}}\prod _{k=1}^{n}r_{k}.} 

Relation to other functions

edit

Particular values

edit

Including up to the first 20 digits after the decimal point, some particular values of the gamma function are:Γ(32)=4π3+2.36327180120735470306Γ(12)=2π3.54490770181103205459Γ(12)=π+1.77245385090551602729Γ(1)=0!=+1Γ(32)=π2+0.88622692545275801364Γ(2)=1!=+1Γ(52)=3π4+1.32934038817913702047Γ(3)=2!=+2Γ(72)=15π8+3.32335097044784255118Γ(4)=3!=+6{\displaystyle {\begin{array}{rcccl}\Gamma \left(-{\tfrac {3}{2}}\right)&=&{\tfrac {4{\sqrt {\pi }}}{3}}&\approx &+2.36327\,18012\,07354\,70306\\\Gamma \left(-{\tfrac {1}{2}}\right)&=&-2{\sqrt {\pi }}&\approx &-3.54490\,77018\,11032\,05459\\\Gamma \left({\tfrac {1}{2}}\right)&=&{\sqrt {\pi }}&\approx &+1.77245\,38509\,05516\,02729\\\Gamma (1)&=&0!&=&+1\\\Gamma \left({\tfrac {3}{2}}\right)&=&{\tfrac {\sqrt {\pi }}{2}}&\approx &+0.88622\,69254\,52758\,01364\\\Gamma (2)&=&1!&=&+1\\\Gamma \left({\tfrac {5}{2}}\right)&=&{\tfrac {3{\sqrt {\pi }}}{4}}&\approx &+1.32934\,03881\,79137\,02047\\\Gamma (3)&=&2!&=&+2\\\Gamma \left({\tfrac {7}{2}}\right)&=&{\tfrac {15{\sqrt {\pi }}}{8}}&\approx &+3.32335\,09704\,47842\,55118\\\Gamma (4)&=&3!&=&+6\end{array}}} (These numbers can be found in theOEIS.[36][37][38][39][40][41] The values presented here are truncated rather than rounded.)The complex-valued gamma function is undefined for non-positive integers, but in these cases the value can be defined in theRiemann sphere as. Thereciprocal gamma function iswell defined andanalytic at these values (and in theentire complex plane):1Γ(3)=1Γ(2)=1Γ(1)=1Γ(0)=0.{\displaystyle {\frac {1}{\Gamma (-3)}}={\frac {1}{\Gamma (-2)}}={\frac {1}{\Gamma (-1)}}={\frac {1}{\Gamma (0)}}=0.} 

Log-gamma function

edit
 
The analytic functionlogΓ(z)

Because the gamma and factorial functions grow so rapidly for moderately large arguments, many computing environments include a function that returns thenatural logarithm of the gamma function, often given the namelgamma orlngamma in programming environments orgammaln in spreadsheets. This grows much more slowly, and for combinatorial calculations allows adding and subtracting logarithmic values instead of multiplying and dividing very large values. It is often defined as[42]logΓ(z)=γzlogz+k=1[zklog(1+zk)].{\displaystyle \operatorname {log\Gamma } (z)=-\gamma z-\log z+\sum _{k=1}^{\infty }\left[{\frac {z}{k}}-\log \left(1+{\frac {z}{k}}\right)\right].} 

Thedigamma function, which is the derivative of this function, is also commonly seen.In the context of technical and physical applications, e.g. with wave propagation, the functional equationlogΓ(z)=logΓ(z+1)logz{\displaystyle \operatorname {log\Gamma } (z)=\operatorname {log\Gamma } (z+1)-\log z} 

 
Logarithmic gamma function in the complex plane from −2 − 2i to 2 + 2i with colors

is often used since it allows one to determine function values in one strip of width 1 inz from the neighbouring strip. In particular, starting with a good approximation for a z with large real part one may go step by step down to the desired z. Following an indication ofCarl Friedrich Gauss, Rocktaeschel (1922) proposed forlogΓ(z) an approximation for largeRe(z):logΓ(z)(z12)logzz+12log(2π).{\displaystyle \operatorname {log\Gamma } (z)\approx (z-{\tfrac {1}{2}})\log z-z+{\tfrac {1}{2}}\log(2\pi ).} 

This can be used to accurately approximatelogΓ(z) forz with a smallerRe(z) via (P.E.Böhmer, 1939)logΓ(zm)=logΓ(z)k=1mlog(zk).{\displaystyle \operatorname {log\Gamma } (z-m)=\operatorname {log\Gamma } (z)-\sum _{k=1}^{m}\log(z-k).} 

A more accurate approximation can be obtained by using more terms from the asymptotic expansions oflogΓ(z) andΓ(z), which are based on Stirling's approximation.Γ(z)zz12ez2π(1+112z+1288z213951840z35712488320z4){\displaystyle \Gamma (z)\sim z^{z-{\frac {1}{2}}}e^{-z}{\sqrt {2\pi }}\left(1+{\frac {1}{12z}}+{\frac {1}{288z^{2}}}-{\frac {139}{51\,840z^{3}}}-{\frac {571}{2\,488\,320z^{4}}}\right)} 

as|z| → ∞ at constant|arg(z)| < π. (See sequencesA001163 andA001164 in theOEIS.)

In a more "natural" presentation:logΓ(z)=zlogzz12logz+12log2π+112z1360z3+11260z5+o(1z5){\displaystyle \operatorname {log\Gamma } (z)=z\log z-z-{\tfrac {1}{2}}\log z+{\tfrac {1}{2}}\log 2\pi +{\frac {1}{12z}}-{\frac {1}{360z^{3}}}+{\frac {1}{1260z^{5}}}+o\left({\frac {1}{z^{5}}}\right)} 

as|z| → ∞ at constant|arg(z)| < π. (See sequencesA046968 andA046969 in theOEIS.)

The coefficients of the terms withk > 1 ofz1−k in the last expansion are simplyBkk(k1){\displaystyle {\frac {B_{k}}{k(k-1)}}} where theBk are theBernoulli numbers.

The gamma function also has Stirling Series (derived byCharles Hermite in 1900) equal to[43]logΓ(1+x)=x(x1)2!log(2)+x(x1)(x2)3!(log(3)2log(2))+,(x)>0.{\displaystyle \operatorname {log\Gamma } (1+x)={\frac {x(x-1)}{2!}}\log(2)+{\frac {x(x-1)(x-2)}{3!}}(\log(3)-2\log(2))+\cdots ,\quad \Re (x)>0.} 

Properties

edit

TheBohr–Mollerup theorem states that among all functions extending the factorial functions to the positive real numbers, only the gamma function islog-convex, that is, itsnatural logarithm isconvex on the positive real axis. Another characterisation is given by theWielandt theorem.

The gamma function is the unique function that simultaneously satisfies

  1. Γ(1)=1{\displaystyle \Gamma (1)=1} ,
  2. Γ(z+1)=zΓ(z){\displaystyle \Gamma (z+1)=z\Gamma (z)}  for all complex numbersz{\displaystyle z}  except the non-positive integers, and,
  3. for integern,limnΓ(n+z)Γ(n)nz=1{\textstyle \lim _{n\to \infty }{\frac {\Gamma (n+z)}{\Gamma (n)\;n^{z}}}=1}  for all complex numbersz{\displaystyle z} .[1]

In a certain sense, the log-gamma function is the more natural form; it makes some intrinsic attributes of the function clearer. A striking example is theTaylor series oflogΓ around 1:logΓ(z+1)=γz+k=2ζ(k)k(z)k|z|<1{\displaystyle \operatorname {log\Gamma } (z+1)=-\gamma z+\sum _{k=2}^{\infty }{\frac {\zeta (k)}{k}}\,(-z)^{k}\qquad \forall \;|z|<1} withζ(k) denoting theRiemann zeta function atk.

So, using the following property:ζ(s)Γ(s)=0tset1dtt{\displaystyle \zeta (s)\Gamma (s)=\int _{0}^{\infty }{\frac {t^{s}}{e^{t}-1}}\,{\frac {dt}{t}}} an integral representation for the log-gamma function is:logΓ(z+1)=γz+0ezt1+ztt(et1)dt{\displaystyle \operatorname {log\Gamma } (z+1)=-\gamma z+\int _{0}^{\infty }{\frac {e^{-zt}-1+zt}{t\left(e^{t}-1\right)}}\,dt} or, settingz = 1 to obtain an integral forγ, we can replace theγ term with its integral and incorporate that into the above formula, to get:logΓ(z+1)=0eztzet1+zt(et1)dt.{\displaystyle \operatorname {log\Gamma } (z+1)=\int _{0}^{\infty }{\frac {e^{-zt}-ze^{-t}-1+z}{t\left(e^{t}-1\right)}}\,dt\,.} 

There also exist special formulas for the logarithm of the gamma function for rationalz. For instance, ifk{\displaystyle k}  andn{\displaystyle n}  are integers withk<n{\displaystyle k<n}  andkn/2,{\displaystyle k\neq n/2\,,}  then[44]logΓ(kn)=(n2k)log2π2n+12{logπlogsinπkn}+1πr=1n1γ+logrrsin2πrkn12πsin2πkn0enxlogxcoshxcos(2πk/n)dx.{\displaystyle {\begin{aligned}\operatorname {log\Gamma } \left({\frac {k}{n}}\right)={}&{\frac {\,(n-2k)\log 2\pi \,}{2n}}+{\frac {1}{2}}\left\{\,\log \pi -\log \sin {\frac {\pi k}{n}}\,\right\}+{\frac {1}{\pi }}\!\sum _{r=1}^{n-1}{\frac {\,\gamma +\log r\,}{r}}\cdot \sin {\frac {\,2\pi rk\,}{n}}\\&{}-{\frac {1}{2\pi }}\sin {\frac {2\pi k}{n}}\cdot \!\int _{0}^{\infty }\!\!{\frac {\,e^{-nx}\!\cdot \log x\,}{\,\cosh x-\cos(2\pi k/n)\,}}\,{\mathrm {d} }x.\end{aligned}}} This formula is sometimes used for numerical computation, since the integrand decreases very quickly.

Integration over log-gamma

edit

The integral0zlogΓ(x)dx{\displaystyle \int _{0}^{z}\operatorname {log\Gamma } (x)\,dx} can be expressed in terms of theBarnesG-function[45][46] (seeBarnesG-function for a proof):0zlogΓ(x)dx=z2log(2π)+z(1z)2+zlogΓ(z)logG(z+1){\displaystyle \int _{0}^{z}\operatorname {log\Gamma } (x)\,dx={\frac {z}{2}}\log(2\pi )+{\frac {z(1-z)}{2}}+z\operatorname {log\Gamma } (z)-\log G(z+1)} whereRe(z) > −1.

It can also be written in terms of theHurwitz zeta function:[47][48]0zlogΓ(x)dx=z2log(2π)+z(1z)2ζ(1)+ζ(1,z).{\displaystyle \int _{0}^{z}\operatorname {log\Gamma } (x)\,dx={\frac {z}{2}}\log(2\pi )+{\frac {z(1-z)}{2}}-\zeta '(-1)+\zeta '(-1,z).} 

Whenz=1{\displaystyle z=1}  it follows that01logΓ(x)dx=12log(2π),{\displaystyle \int _{0}^{1}\operatorname {log\Gamma } (x)\,dx={\frac {1}{2}}\log(2\pi ),} and this is a consequence ofRaabe's formula as well. O. Espinosa and V. Moll derived a similar formula for the integral of the square oflogΓ{\displaystyle \operatorname {log\Gamma } } :[49]01log2Γ(x)dx=γ212+π248+13γL1+43L12(γ+2L1)ζ(2)π2+ζ(2)2π2,{\displaystyle \int _{0}^{1}\log ^{2}\Gamma (x)dx={\frac {\gamma ^{2}}{12}}+{\frac {\pi ^{2}}{48}}+{\frac {1}{3}}\gamma L_{1}+{\frac {4}{3}}L_{1}^{2}-\left(\gamma +2L_{1}\right){\frac {\zeta ^{\prime }(2)}{\pi ^{2}}}+{\frac {\zeta ^{\prime \prime }(2)}{2\pi ^{2}}},} whereL1{\displaystyle L_{1}}  is12log(2π){\displaystyle {\frac {1}{2}}\log(2\pi )} .

D. H. Bailey and his co-authors[50] gave an evaluation forLn:=01lognΓ(x)dx{\displaystyle L_{n}:=\int _{0}^{1}\log ^{n}\Gamma (x)\,dx} whenn=1,2{\displaystyle n=1,2}  in terms of the Tornheim–Witten zeta function and its derivatives.

In addition, it is also known that[51]limnLnn!=1.{\displaystyle \lim _{n\to \infty }{\frac {L_{n}}{n!}}=1.} 

Approximations

edit
 
Comparison of the gamma function (blue line) with the factorial (blue dots) and Stirling's approximation (red line)

Complex values of the gamma function can be approximated usingStirling's approximation or theLanczos approximation,Γ(z)2πzz1/2ezas z in |arg(z)|<π.{\displaystyle \Gamma (z)\sim {\sqrt {2\pi }}z^{z-1/2}e^{-z}\quad {\hbox{as }}z\to \infty {\hbox{ in }}\left|\arg(z)\right|<\pi .} This is precise in the sense that the ratio of the approximation to the true value approaches 1 in the limit as|z| goes to infinity.

The gamma function can be computed to fixed precision forRe(z)[1,2]{\displaystyle \operatorname {Re} (z)\in [1,2]}  by applyingintegration by parts to Euler's integral. For any positive number x the gamma function can be writtenΓ(z)=0xettzdtt+xettzdtt=xzexn=0xnz(z+1)(z+n)+xettzdtt.{\displaystyle {\begin{aligned}\Gamma (z)&=\int _{0}^{x}e^{-t}t^{z}\,{\frac {dt}{t}}+\int _{x}^{\infty }e^{-t}t^{z}\,{\frac {dt}{t}}\\&=x^{z}e^{-x}\sum _{n=0}^{\infty }{\frac {x^{n}}{z(z+1)\cdots (z+n)}}+\int _{x}^{\infty }e^{-t}t^{z}\,{\frac {dt}{t}}.\end{aligned}}} 

WhenRe(z) ∈ [1,2] andx1{\displaystyle x\geq 1} , the absolute value of the last integral is smaller than(x+1)ex{\displaystyle (x+1)e^{-x}} . By choosing a large enoughx{\displaystyle x} , this last expression can be made smaller than2N{\displaystyle 2^{-N}}  for any desired valueN{\displaystyle N} . Thus, the gamma function can be evaluated toN{\displaystyle N}  bits of precision with the above series.

A fast algorithm for calculation of the Euler gamma function for any algebraic argument (including rational) was constructed by E.A. Karatsuba.[52][53][54]

For arguments that are integer multiples of1/24, the gamma function can also be evaluated quickly usingarithmetic–geometric mean iterations (seeparticular values of the gamma function).[55]

Practical implementations

edit

Unlike many other functions, such as aNormal Distribution, no obvious fast, accurate implementation that is easy to implement for the Gamma FunctionΓ(z){\displaystyle \Gamma (z)}  is easily found. Therefore, it is worth investigating potential solutions. For the case that speed is more important than accuracy, published tables forΓ(z){\displaystyle \Gamma (z)}  are easily found in an Internet search, such as the Online Wiley Library. Such tables may be used withlinear interpolation. Greater accuracy is obtainable with the use ofcubic interpolation at the cost of more computational overhead. SinceΓ(z){\displaystyle \Gamma (z)}  tables are usually published for argument values between 1 and 2, the propertyΓ(z+1)=z Γ(z){\displaystyle \Gamma (z+1)=z\ \Gamma (z)}  may be used to quickly and easily translate all real valuesz<1{\displaystyle z<1}  andz>2{\displaystyle z>2}  into the range1z2{\displaystyle 1\leq z\leq 2} , such that only tabulated values ofz{\displaystyle z}  between 1 and 2 need be used.[56]

If interpolation tables are not desirable, then theLanczos approximation mentioned above works well for 1 to 2 digits of accuracy for small, commonly used values of z. If the Lanczos approximation is not sufficiently accurate, theStirling's formula for the Gamma Function may be used.

Applications

edit

One author describes the gamma function as "Arguably, the most common special function, or the least 'special' of them. The other transcendental functions […] are called 'special' because you could conceivably avoid some of them by staying away from many specialized mathematical topics. On the other hand, the gamma functionΓ(z) is most difficult to avoid."[57]

Integration problems

edit

The gamma function finds application in such diverse areas asquantum physics,astrophysics andfluid dynamics.[58] Thegamma distribution, which is formulated in terms of the gamma function, is used instatistics to model a wide range of processes; for example, the time between occurrences of earthquakes.[59]

The primary reason for the gamma function's usefulness in such contexts is the prevalence of expressions of the typef(t)eg(t){\displaystyle f(t)e^{-g(t)}}  which describe processes that decay exponentially in time or space. Integrals of such expressions can occasionally be solved in terms of the gamma function when no elementary solution exists. For example, iff is a power function andg is a linear function, a simple change of variablesu:=at{\displaystyle u:=a\cdot t}  gives the evaluation

0tbeatdt=1ab0ubeud(ua)=Γ(b+1)ab+1.{\displaystyle \int _{0}^{\infty }t^{b}e^{-at}\,dt={\frac {1}{a^{b}}}\int _{0}^{\infty }u^{b}e^{-u}d\left({\frac {u}{a}}\right)={\frac {\Gamma (b+1)}{a^{b+1}}}.} 

The fact that the integration is performed along the entire positive real line might signify that the gamma function describes the cumulation of a time-dependent process that continues indefinitely, or the value might be the total of a distribution in an infinite space.

It is of course frequently useful to take limits of integration other than 0 and to describe the cumulation of a finite process, in which case the ordinary gamma function is no longer a solution; the solution is then called anincomplete gamma function. (The ordinary gamma function, obtained by integrating across the entire positive real line, is sometimes called thecomplete gamma function for contrast.)

An important category of exponentially decaying functions is that ofGaussian functionsae(xb)2c2{\displaystyle ae^{-{\frac {(x-b)^{2}}{c^{2}}}}} and integrals thereof, such as theerror function. There are many interrelations between these functions and the gamma function; notably, the factorπ{\displaystyle {\sqrt {\pi }}}  obtained by evaluatingΓ(12){\textstyle \Gamma \left({\frac {1}{2}}\right)}  is the "same" as that found in the normalizing factor of the error function and thenormal distribution.

The integrals discussed so far involvetranscendental functions, but the gamma function also arises from integrals of purely algebraic functions. In particular, thearc lengths ofellipses and of thelemniscate, which are curves defined by algebraic equations, are given byelliptic integrals that in special cases can be evaluated in terms of the gamma function. The gamma function can also be used tocalculate "volume" and "area" ofn-dimensionalhyperspheres.

Calculating products

edit

The gamma function's ability to generalize factorial products immediately leads to applications in many areas of mathematics; incombinatorics, and by extension in areas such asprobability theory and the calculation ofpower series. Many expressions involving products of successive integers can be written as some combination of factorials, the most important example perhaps being that of thebinomial coefficient. For example, for any complex numbersz andn, with|z| < 1, we can write(1+z)n=k=0Γ(n+1)k!Γ(nk+1)zk,{\displaystyle (1+z)^{n}=\sum _{k=0}^{\infty }{\frac {\Gamma (n+1)}{k!\Gamma (n-k+1)}}z^{k},} which closely resembles the binomial coefficient whenn is a non-negative integer,(1+z)n=k=0nn!k!(nk)!zk=k=0n(nk)zk.{\displaystyle (1+z)^{n}=\sum _{k=0}^{n}{\frac {n!}{k!(n-k)!}}z^{k}=\sum _{k=0}^{n}{\binom {n}{k}}z^{k}.} 

The example of binomial coefficients motivates why the properties of the gamma function when extended to negative numbers are natural. A binomial coefficient gives the number of ways to choosek elements from a set ofn elements; ifk >n, there are of course no ways. Ifk >n,(nk)! is the factorial of a negative integer and hence infinite if we use the gamma function definition of factorials—dividing by infinity gives the expected value of 0.

We can replace the factorial by a gamma function to extend any such formula to the complex numbers. Generally, this works for any product wherein each factor is arational function of the index variable, by factoring the rational function into linear expressions. IfP andQ are monic polynomials of degreem andn with respective rootsp1, …,pm andq1, …,qn, we havei=abP(i)Q(i)=(j=1mΓ(bpj+1)Γ(apj))(k=1nΓ(aqk)Γ(bqk+1)).{\displaystyle \prod _{i=a}^{b}{\frac {P(i)}{Q(i)}}=\left(\prod _{j=1}^{m}{\frac {\Gamma (b-p_{j}+1)}{\Gamma (a-p_{j})}}\right)\left(\prod _{k=1}^{n}{\frac {\Gamma (a-q_{k})}{\Gamma (b-q_{k}+1)}}\right).} 

If we have a way to calculate the gamma function numerically, it is very simple to calculate numerical values of such products. The number of gamma functions in the right-hand side depends only on the degree of the polynomials, so it does not matter whetherba equals 5 or 105. By taking the appropriate limits, the equation can also be made to hold even when the left-hand product contains zeros or poles.

By taking limits, certain rational products with infinitely many factors can be evaluated in terms of the gamma function as well. Due to theWeierstrass factorization theorem, analytic functions can be written as infinite products, and these can sometimes be represented as finite products or quotients of the gamma function. We have already seen one striking example: the reflection formula essentially represents the sine function as the product of two gamma functions. Starting from this formula, the exponential function as well as all the trigonometric and hyperbolic functions can be expressed in terms of the gamma function.

More functions yet, including thehypergeometric function and special cases thereof, can be represented by means of complexcontour integrals of products and quotients of the gamma function, calledMellin–Barnes integrals.

Analytic number theory

edit

An application of the gamma function is the study of theRiemann zeta function. A fundamental property of the Riemann zeta function is itsfunctional equation:Γ(s2)ζ(s)πs2=Γ(1s2)ζ(1s)π1s2.{\displaystyle \Gamma \left({\frac {s}{2}}\right)\zeta (s)\pi ^{-{\frac {s}{2}}}=\Gamma \left({\frac {1-s}{2}}\right)\zeta (1-s)\pi ^{-{\frac {1-s}{2}}}.} 

Among other things, this provides an explicit form for theanalytic continuation of the zeta function to a meromorphic function in the complex plane and leads to an immediate proof that the zeta function has infinitely many so-called "trivial" zeros on the real line. Borweinet al. call this formula "one of the most beautiful findings in mathematics".[60] Another contender for that title might beζ(s)Γ(s)=0tset1dtt.{\displaystyle \zeta (s)\;\Gamma (s)=\int _{0}^{\infty }{\frac {t^{s}}{e^{t}-1}}\,{\frac {dt}{t}}.} 

Both formulas were derived byBernhard Riemann in his seminal 1859 paper "Ueber die Anzahl der Primzahlen unter einer gegebenen Größe" ("On the Number of Primes Less Than a Given Magnitude"), one of the milestones in the development ofanalytic number theory—the branch of mathematics that studiesprime numbers using the tools of mathematical analysis.

History

edit

The gamma function has caught the interest of some of the most prominent mathematicians of all time. Its history, notably documented byPhilip J. Davis in an article that won him the 1963Chauvenet Prize, reflects many of the major developments within mathematics since the 18th century. In the words of Davis, "each generation has found something of interest to say about the gamma function. Perhaps the next generation will also."[1]

18th century: Euler and Stirling

edit
 
Daniel Bernoulli's letter toChristian Goldbach, October 6, 1729

The problem of extending the factorial to non-integer arguments was apparently first considered byDaniel Bernoulli andChristian Goldbach in the 1720s. In particular, in a letter from Bernoulli to Goldbach dated 6 October 1729 Bernoulli introduced the product representation[61]x!=limn(n+1+x2)x1k=1nk+1k+x{\displaystyle x!=\lim _{n\to \infty }\left(n+1+{\frac {x}{2}}\right)^{x-1}\prod _{k=1}^{n}{\frac {k+1}{k+x}}} which is well defined for real values ofx other than the negative integers.

Leonhard Euler later gave two different definitions: the first was not his integral but aninfinite product that is well defined for all complex numbersn other than the negative integers,n!=k=1(1+1k)n1+nk,{\displaystyle n!=\prod _{k=1}^{\infty }{\frac {\left(1+{\frac {1}{k}}\right)^{n}}{1+{\frac {n}{k}}}}\,,} of which he informed Goldbach in a letter dated 13 October 1729. He wrote to Goldbach again on 8 January 1730, to announce his discovery of the integral representationn!=01(logs)nds,{\displaystyle n!=\int _{0}^{1}(-\log s)^{n}\,ds\,,} which is valid when the real part of the complex numbern is strictly greater than−1 (i.e.,(n)>1{\displaystyle \Re (n)>-1} ). By the change of variablest = −lns, this becomes the familiar Euler integral. Euler published his results in the paper "De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt" ("On transcendental progressions, that is, those whose general terms cannot be given algebraically"), submitted to theSt. Petersburg Academy on 28 November 1729.[62] Euler further discovered some of the gamma function's important functional properties, including the reflection formula.

James Stirling, a contemporary of Euler, also attempted to find a continuous expression for the factorial and came up with what is now known asStirling's formula. Although Stirling's formula gives a good estimate ofn!, also for non-integers, it does not provide the exact value. Extensions of his formula that correct the error were given by Stirling himself and byJacques Philippe Marie Binet.

19th century: Gauss, Weierstrass and Legendre

edit
 
The first page of Euler's paper

Carl Friedrich Gauss rewrote Euler's product asΓ(z)=limmmzm!z(z+1)(z+2)(z+m){\displaystyle \Gamma (z)=\lim _{m\to \infty }{\frac {m^{z}m!}{z(z+1)(z+2)\cdots (z+m)}}} and used this formula to discover new properties of the gamma function. Although Euler was a pioneer in the theory of complex variables, he does not appear to have considered the factorial of a complex number, as instead Gauss first did.[63] Gauss also proved themultiplication theorem of the gamma function and investigated the connection between the gamma function andelliptic integrals.

Karl Weierstrass further established the role of the gamma function incomplex analysis, starting from yet another product representation,Γ(z)=eγzzk=1(1+zk)1ezk,{\displaystyle \Gamma (z)={\frac {e^{-\gamma z}}{z}}\prod _{k=1}^{\infty }\left(1+{\frac {z}{k}}\right)^{-1}e^{\frac {z}{k}},} whereγ is theEuler–Mascheroni constant. Weierstrass originally wrote his product as one for1/Γ, in which case it is taken over the function's zeros rather than its poles. Inspired by this result, he proved what is known as theWeierstrass factorization theorem—that any entire function can be written as a product over its zeros in the complex plane; a generalization of thefundamental theorem of algebra.

The name gamma function and the symbolΓ were introduced byAdrien-Marie Legendre around 1811; Legendre also rewrote Euler's integral definition in its modern form. Although the symbol is an upper-case Greek gamma, there is no accepted standard for whether the function name should be written "gamma function" or "Gamma function" (some authors simply write "Γ-function"). The alternative "pi function" notationΠ(z) =z! due to Gauss is sometimes encountered in older literature, but Legendre's notation is dominant in modern works.

It is justified to ask why we distinguish between the "ordinary factorial" and the gamma function by using distinct symbols, and particularly why the gamma function should be normalized toΓ(n + 1) =n! instead of simply using "Γ(n) =n!". Consider that the notation for exponents,xn, has been generalized from integers to complex numbersxz without any change. Legendre's motivation for the normalization is not known, and has been criticized as cumbersome by some (the 20th-century mathematicianCornelius Lanczos, for example, called it "void of any rationality" and would instead usez!).[64] Legendre's normalization does simplify some formulae, but complicates others. From a modern point of view, the Legendre normalization of the gamma function is the integral of the additivecharacterex against the multiplicative characterxz with respect to theHaar measuredxx{\textstyle {\frac {dx}{x}}}  on theLie groupR+. Thus this normalization makes it clearer that the gamma function is a continuous analogue of aGauss sum.[65]

19th–20th centuries: characterizing the gamma function

edit

It is somewhat problematic that a large number of definitions have been given for the gamma function. Although they describe the same function, it is not entirely straightforward to prove the equivalence. Stirling never proved that his extended formula corresponds exactly to Euler's gamma function; a proof was first given byCharles Hermite in 1900.[66] Instead of finding a specialized proof for each formula, it would be desirable to have a general method of identifying the gamma function.

One way to prove equivalence would be to find adifferential equation that characterizes the gamma function. Most special functions in applied mathematics arise as solutions to differential equations, whose solutions are unique. However, the gamma function does not appear to satisfy any simple differential equation.Otto Hölder proved in 1887 that the gamma function at least does not satisfy anyalgebraic differential equation by showing that a solution to such an equation could not satisfy the gamma function's recurrence formula, making it atranscendentally transcendental function. This result is known asHölder's theorem.

A definite and generally applicable characterization of the gamma function was not given until 1922.Harald Bohr andJohannes Mollerup then proved what is known as theBohr–Mollerup theorem: that the gamma function is the unique solution to the factorial recurrence relation that is positive andlogarithmically convex for positivez and whose value at 1 is 1 (a function is logarithmically convex if its logarithm is convex). Another characterisation is given by theWielandt theorem.

The Bohr–Mollerup theorem is useful because it is relatively easy to prove logarithmic convexity for any of the different formulas used to define the gamma function. Taking things further, instead of defining the gamma function by any particular formula, we can choose the conditions of the Bohr–Mollerup theorem as the definition, and then pick any formula we like that satisfies the conditions as a starting point for studying the gamma function. This approach was used by theBourbaki group.

Borwein & Corless review three centuries of work on the gamma function.[67]

Reference tables and software

edit

Although the gamma function can be calculated virtually as easily as any mathematically simpler function with a modern computer—even with a programmable pocket calculator—this was of course not always the case. Until the mid-20th century, mathematicians relied on hand-made tables; in the case of the gamma function, notably a table computed by Gauss in 1813 and one computed by Legendre in 1825.[68]

 
A hand-drawn graph of the absolute value of the complex gamma function, fromTables of Higher Functions byJahnke andEmde [de].

Tables of complex values of the gamma function, as well as hand-drawn graphs, were given inTables of Functions With Formulas and Curves byJahnke andEmde [de], first published in Germany in 1909. According toMichael Berry, "the publication in J&E of a three-dimensional graph showing the poles of the gamma function in the complex plane acquired an almost iconic status."[69]

There was in fact little practical need for anything but real values of the gamma function until the 1930s, when applications for the complex gamma function were discovered in theoretical physics. As electronic computers became available for the production of tables in the 1950s, several extensive tables for the complex gamma function were published to meet the demand, including a table accurate to 12 decimal places from the U.S.National Bureau of Standards.[1]

 
Reproduction of a famous complex plot by Janhke and Emde (Tables of Functions with Formulas and Curves, 4th ed., Dover, 1945) of the gamma function from −4.5 − 2.5i to 4.5 + 2.5i

Double-precision floating-point implementations of the gamma function and its logarithm are now available in most scientific computing software and special functions libraries, for exampleTK Solver,Matlab,GNU Octave, and theGNU Scientific Library. The gamma function was also added to theC standard library (math.h). Arbitrary-precision implementations are available in mostcomputer algebra systems, such asMathematica andMaple.PARI/GP,MPFR andMPFUN contain free arbitrary-precision implementations. In somesoftware calculators, e.g.Windows Calculator andGNOME Calculator, the factorial function returns Γ(x + 1) when the inputx is a non-integer value.[70][71]

See also

edit

Notes

edit
  1. ^abcdefghijklmnDavis, P. J. (1959)."Leonhard Euler's Integral: A Historical Profile of the Gamma Function".American Mathematical Monthly.66 (10):849–869.doi:10.2307/2309786.JSTOR 2309786. Archived fromthe original on 7 November 2012. Retrieved3 December 2016.
  2. ^"Is the Gamma function misdefined? Or: Hadamard versus Euler — Who found the better Gamma function?".
  3. ^Beals, Richard; Wong, Roderick (2010).Special Functions: A Graduate Text. Cambridge University Press. p. 28.ISBN 978-1-139-49043-6.Extract of page 28
  4. ^Ross, Clay C. (2013).Differential Equations: An Introduction with Mathematica (illustrated ed.). Springer Science & Business Media. p. 293.ISBN 978-1-4757-3949-7.Expression G.2 on page 293
  5. ^Kingman, J. F. C. (1961). "A Convexity Property of Positive Matrices".The Quarterly Journal of Mathematics.12 (1):283–284.Bibcode:1961QJMat..12..283K.doi:10.1093/qmath/12.1.283.
  6. ^Weisstein, Eric W."Bohr–Mollerup Theorem".MathWorld.
  7. ^Davis, Philip."Leonhard Euler's Integral: A Historical Profile of the Gamma Function"(PDF).maa.org.
  8. ^Bonvini, Marco (9 October 2010)."The Gamma function"(PDF).Roma1.infn.it.
  9. ^Askey, R. A.; Roy, R. (2010),"Series Expansions", inOlver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),NIST Handbook of Mathematical Functions, Cambridge University Press,ISBN 978-0-521-19225-5,MR 2723248.
  10. ^Waldschmidt, M. (2006)."Transcendence of Periods: The State of the Art"(PDF).Pure Appl. Math. Quart.2 (2):435–463.doi:10.4310/pamq.2006.v2.n2.a3.Archived(PDF) from the original on 6 May 2006.
  11. ^"How to obtain the Laurent expansion of gamma function around $z=0$?".Mathematics Stack Exchange. Retrieved17 August 2022.
  12. ^Artin, Emil (2015).The Gamma Function. Dover. p. 24.
  13. ^Oldham, Keith; Myland, Jan; Spanier, Jerome (2010).An Atlas of Functions (2 ed.). Ch 43: Springer Science & Business Media.ISBN 9780387488073.{{cite book}}: CS1 maint: location (link)
  14. ^abWeisstein, Eric W."Gamma Function".MathWorld.
  15. ^Sloane, N. J. A. (ed.)."Sequence A030169 (Decimal expansion of real number x such that y = Gamma(x) is a minimum)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^Sloane, N. J. A. (ed.)."Sequence A030171 (Decimal expansion of real number y such that y = Gamma(x) is a minimum)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^Sloane, N. J. A. (ed.)."Sequence A178840 (Decimal expansion of the factorial of Golden Ratio)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^Sloane, N. J. A. (ed.)."Sequence A175472 (Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -1,0])".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^Sloane, N. J. A. (ed.)."Sequence A175473 (Decimal expansion of the absolute value of the abscissa of the local minimum of the Gamma function in the interval [ -2,-1])".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^Sloane, N. J. A. (ed.)."Sequence A175474 (Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -3,-2])".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^Sloane, N. J. A. (ed.)."Sequence A256681 (Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-4,-3])".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^Sloane, N. J. A. (ed.)."Sequence A256682 (Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-5,-4])".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^Gradshteyn, I. S.; Ryzhik, I. M. (2007).Table of Integrals, Series, and Products (Seventh ed.). Academic Press. p. 893.ISBN 978-0-12-373637-6.
  24. ^Whittaker and Watson, 12.2 example 1.
  25. ^Detlef, Gronau."Why is the gamma function so as it is?"(PDF).Imsc.uni-graz.at.
  26. ^Pascal Sebah, Xavier Gourdon."Introduction to the Gamma Function"(PDF).Numbers Computation. Archived fromthe original(PDF) on 30 January 2023. Retrieved30 January 2023.
  27. ^Whittaker and Watson, 12.31.
  28. ^Whittaker and Watson, 12.32.
  29. ^Whittaker and Watson, 12.22.
  30. ^"Exponential integral E: Continued fraction representations (Formula 06.34.10.0005)".
  31. ^"Exponential integral E: Continued fraction representations (Formula 06.34.10.0003)".
  32. ^Bateman, Harry; Erdélyi, Arthur (1955).Higher Transcendental Functions. McGraw-Hill.OCLC 627135.
  33. ^Srivastava, H. M.; Choi, J. (2001).Series Associated with the Zeta and Related Functions. The Netherlands: Kluwer Academic.ISBN 0-7923-7054-6.
  34. ^Blagouchine, Iaroslav V. (2014)."Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results".Ramanujan J.35 (1):21–110.doi:10.1007/s11139-013-9528-5.S2CID 120943474.
  35. ^Blagouchine, Iaroslav V. (2016). "Erratum and Addendum to "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results"".Ramanujan J.42 (3):777–781.doi:10.1007/s11139-015-9763-z.S2CID 125198685.
  36. ^Sloane, N. J. A. (ed.)."Sequence A245886 (Decimal expansion of Gamma(-3/2), where Gamma is Euler's gamma function)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^Sloane, N. J. A. (ed.)."Sequence A019707 (Decimal expansion of sqrt(Pi)/5)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^Sloane, N. J. A. (ed.)."Sequence A002161 (Decimal expansion of square root of Pi)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^Sloane, N. J. A. (ed.)."Sequence A019704 (Decimal expansion of sqrt(Pi)/2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. ^Sloane, N. J. A. (ed.)."Sequence A245884 (Decimal expansion of Gamma(5/2), where Gamma is Euler's gamma function)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^Sloane, N. J. A. (ed.)."Sequence A245885 (Decimal expansion of Gamma(7/2), where Gamma is Euler's gamma function)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^"Log Gamma Function".Wolfram MathWorld. Retrieved3 January 2019.
  43. ^"Leonhard Euler's Integral: An Historical Profile of the Gamma Function"(PDF).Archived(PDF) from the original on 12 September 2014. Retrieved11 April 2022.
  44. ^Blagouchine, Iaroslav V. (2015). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations".Journal of Number Theory.148:537–592.arXiv:1401.3724.doi:10.1016/j.jnt.2014.08.009.
  45. ^Alexejewsky, W. P. (1894). "Über eine Classe von Funktionen, die der Gammafunktion analog sind" [On a class of functions analogous to the gamma function].Leipzig Weidmannsche Buchhandlung.46:268–275.
  46. ^Barnes, E. W. (1899). "The theory of theG-function".Quart. J. Math.31:264–314.
  47. ^Adamchik, Victor S. (1998)."Polygamma functions of negative order".J. Comput. Appl. Math.100 (2):191–199.doi:10.1016/S0377-0427(98)00192-7.
  48. ^Gosper, R. W. (1997). "n/4m/6logF(z)dz{\displaystyle \textstyle \int _{n/4}^{m/6}\log F(z)\,dz}  in special functions,q-series and related topics".J. Am. Math. Soc.14.
  49. ^Espinosa, Olivier; Moll, Victor H. (2002). "On Some Integrals Involving the Hurwitz Zeta Function: Part 1".The Ramanujan Journal.6 (2):159–188.doi:10.1023/A:1015706300169.S2CID 128246166.
  50. ^Bailey, David H.; Borwein, David; Borwein, Jonathan M. (2015). "On Eulerian log-gamma integrals and Tornheim-Witten zeta functions".The Ramanujan Journal.36 (1–2):43–68.doi:10.1007/s11139-012-9427-1.S2CID 7335291.
  51. ^Amdeberhan, T.; Coffey, Mark W.; Espinosa, Olivier; Koutschan, Christoph; Manna, Dante V.; Moll, Victor H. (2011)."Integrals of powers of loggamma".Proc. Amer. Math. Soc.139 (2):535–545.doi:10.1090/S0002-9939-2010-10589-0.
  52. ^E.A. Karatsuba, Fast evaluation of transcendental functions. Probl. Inf. Transm. Vol.27, No.4, pp. 339–360 (1991).
  53. ^E.A. Karatsuba, On a new method for fast evaluation of transcendental functions. Russ. Math. Surv. Vol.46, No.2, pp. 246–247 (1991).
  54. ^E.A. Karatsuba "Fast Algorithms and the FEE Method".
  55. ^Borwein, J. M.; Zucker, I. J. (1992). "Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind".IMA Journal of Numerical Analysis.12 (4):519–526.doi:10.1093/IMANUM/12.4.519.
  56. ^Werner, Helmut; Collinge, Robert (1961). "Chebyshev approximations to the Gamma Function".Math. Comput.15 (74):195–197.doi:10.1090/S0025-5718-61-99220-1.JSTOR 2004230.
  57. ^Michon, G. P. "Trigonometry and Basic FunctionsArchived 9 January 2010 at theWayback Machine".Numericana. Retrieved 5 May 2007.
  58. ^Chaudry, M. A.; Zubair, S. M. (2001).On A Class of Incomplete Gamma Functions with Applications. Boca Raton: CRC Press. p. 37.ISBN 1-58488-143-7.
  59. ^Rice, J. A. (1995).Mathematical Statistics and Data Analysis (Second ed.). Belmont: Duxbury Press. pp. 52–53.ISBN 0-534-20934-3.
  60. ^Borwein, J.; Bailey, D. H. & Girgensohn, R. (2003).Experimentation in Mathematics. A. K. Peters. p. 133.ISBN 978-1-56881-136-9.
  61. ^"Interpolating the natural factorial n! or The birth of the real factorial function (1729 - 1826)".
  62. ^Euler's paper was published inCommentarii academiae scientiarum Petropolitanae 5, 1738, 36–57. SeeE19 -- De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt, from The Euler Archive, which includes a scanned copy of the original article.
  63. ^Remmert, R. (2006).Classical Topics in Complex Function Theory. Translated by Kay, L. D. Springer.ISBN 978-0-387-98221-2.
  64. ^Lanczos, C. (1964). "A precision approximation of the gamma function".Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis.1 (1): 86.Bibcode:1964SJNA....1...86L.doi:10.1137/0701008.
  65. ^Ilker Inam; Engin Büyükaşşk (2019).Notes from the International Autumn School on Computational Number Theory. Springer. p. 205.ISBN 978-3-030-12558-5.Extract of page 205
  66. ^Knuth, D. E. (1997).The Art of Computer Programming. Vol. 1 (Fundamental Algorithms). Addison-Wesley.ISBN 0-201-89683-4.
  67. ^Borwein, Jonathan M.; Corless, Robert M. (2017). "Gamma and Factorial in the Monthly".American Mathematical Monthly.125 (5). Mathematical Association of America:400–24.arXiv:1703.05349.Bibcode:2017arXiv170305349B.doi:10.1080/00029890.2018.1420983.S2CID 119324101.
  68. ^"What's the history of Gamma_function?".yearis.com. Retrieved5 November 2022.
  69. ^Berry, M. (April 2001)."Why are special functions special?".Physics Today.
  70. ^"microsoft/calculator".GitHub. Retrieved25 December 2020.
  71. ^"gnome-calculator".GNOME.org. Retrieved3 March 2023.

Further reading

edit

External links

edit
Wikimedia Commons has media related toGamma and related functions.

[8]ページ先頭

©2009-2025 Movatter.jp