Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Euler–Rodrigues formula

(Redirected fromEuler–Rodrigues parameters)

Inmathematics andmechanics, theEuler–Rodrigues formula describes the rotation of a vector in three dimensions. It is based onRodrigues' rotation formula, but uses a different parametrization.

The rotation is described by fourEuler parameters due toLeonhard Euler. TheRodrigues' rotation formula (named afterOlinde Rodrigues), a method of calculating the position of a rotated point, is used in some software applications, such asflight simulators andcomputer games.

Definition

edit

A rotation about the origin is represented by four real numbers,a, b, c, d such that

a2+b2+c2+d2=1.{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=1.} 

When the rotation is applied, a point at positionx{\displaystyle {\vec {x}}}  rotates to its new position,[1]

x=(a2+b2c2d22(bcad)2(bd+ac)2(bc+ad)a2+c2b2d22(cdab)2(bdac)2(cd+ab)a2+d2b2c2)x.{\displaystyle {\vec {x}}'={\begin{pmatrix}a^{2}+b^{2}-c^{2}-d^{2}&2(bc-ad)&2(bd+ac)\\2(bc+ad)&a^{2}+c^{2}-b^{2}-d^{2}&2(cd-ab)\\2(bd-ac)&2(cd+ab)&a^{2}+d^{2}-b^{2}-c^{2}\end{pmatrix}}{\vec {x}}.} 

Vector formulation

edit

The parametera may be called thescalar parameter andω=(b,c,d){\displaystyle {\vec {\omega }}=(b,c,d)}  thevector parameter. In standard vector notation, the Rodrigues rotation formula takes the compact form[citation needed]

Symmetry

edit

The parameters(a, b, c, d) and(−a, −b, −c, −d) describe the same rotation. Apart from this symmetry, every set of four parameters describes a unique rotation in three-dimensional space.

Composition of rotations

edit

The composition of two rotations is itself a rotation. Let(a1, b1, c1, d1) and(a2, b2, c2, d2) be the Euler parameters of two rotations. The parameters for the compound rotation (rotation 2 after rotation 1) are as follows:

a=a1a2b1b2c1c2d1d2;b=a1b2+b1a2c1d2+d1c2;c=a1c2+c1a2d1b2+b1d2;d=a1d2+d1a2b1c2+c1b2.{\displaystyle {\begin{aligned}a&=a_{1}a_{2}-b_{1}b_{2}-c_{1}c_{2}-d_{1}d_{2};\\b&=a_{1}b_{2}+b_{1}a_{2}-c_{1}d_{2}+d_{1}c_{2};\\c&=a_{1}c_{2}+c_{1}a_{2}-d_{1}b_{2}+b_{1}d_{2};\\d&=a_{1}d_{2}+d_{1}a_{2}-b_{1}c_{2}+c_{1}b_{2}.\end{aligned}}} 

It is straightforward, though tedious, to check thata2 +b2 +c2 +d2 = 1. (This is essentiallyEuler's four-square identity.)

Rotation angle and rotation axis

edit

Any central rotation in three dimensions is uniquely determined by its axis of rotation (represented by aunit vectork = (kx,ky,kz)) and the rotation angleφ. The Euler parameters for this rotation are calculated as follows:

a=cosφ2;b=kxsinφ2;c=kysinφ2;d=kzsinφ2.{\displaystyle {\begin{aligned}a&=\cos {\frac {\varphi }{2}};\\b&=k_{x}\sin {\frac {\varphi }{2}};\\c&=k_{y}\sin {\frac {\varphi }{2}};\\d&=k_{z}\sin {\frac {\varphi }{2}}.\end{aligned}}} 

Note that ifφ is increased by a full rotation of 360 degrees, the arguments of sine and cosine only increase by 180 degrees. The resulting parameters are the opposite of the original values,(−a, −b, −c, −d); they represent the same rotation.

In particular, the identity transformation (null rotation,φ = 0) corresponds to parameter values(a,b,c,d) = (±1, 0, 0, 0). Rotations of 180 degrees about any axis result ina = 0.

Connection with quaternions

edit

The Euler parameters can be viewed as the coefficients of aquaternion; the scalar parametera is the real part, the vector parametersb,c,d are the imaginary parts.Thus we have the quaternion

q=a+bi+cj+dk,{\displaystyle q=a+bi+cj+dk,} 

which is a quaternion of unit length (orversor) since

q2=a2+b2+c2+d2=1.{\displaystyle \left\|q\right\|^{2}=a^{2}+b^{2}+c^{2}+d^{2}=1.} 

Most importantly, the above equations for composition of rotations are precisely the equations for multiplication of quaternionsq=q2q1{\displaystyle q=q_{2}\,q_{1}} . In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with composition.

A rotation in 3D can thus be represented by a unit quaternionq:

q=cosφ2+ksinφ2=a+ω,{\displaystyle q=\cos {\frac {\varphi }{2}}+\mathbf {k} \sin {\frac {\varphi }{2}}=a+{\vec {\omega }},} 

where:

For a 3D vectorv{\displaystyle \mathbf {v} }  identified as a pure quaternion, the rotated vectorv{\displaystyle \mathbf {v} '}  is given by:

v=qvq1,{\displaystyle \mathbf {v} '=q\mathbf {v} q^{-1},} 

whereq1=cosφ2ksinφ2=aω.{\displaystyle q^{-1}=\cos {\tfrac {\varphi }{2}}-\mathbf {k} \sin {\tfrac {\varphi }{2}}=a-{\vec {\omega }}.} 

The previous equation can be shown to be equivalent to the Euler-Rodrigues equation by exploiting thecommutation relationship

q2q1=q1q22k1×k2{\displaystyle q_{2}q_{1}=q_{1}q_{2}-2\mathbf {k_{1}} \times \mathbf {k_{2}} } 

and the fact thatqq1=1{\displaystyle qq^{-1}=1}  as follows:

qvq1=q(q1v2(ω)×v){\displaystyle q\mathbf {v} q^{-1}=q(q^{-1}\mathbf {v} -2(-{\vec {\omega }})\times \mathbf {v} )} 
qvq1=qq1v+(a+ω)q(2ω×v){\displaystyle {\phantom {q\mathbf {v} q^{-1}}}={\cancel {qq^{-}1}}\mathbf {v} +\underbrace {(a+{\vec {\omega }})} _{q}(2{\vec {\omega }}\times \mathbf {v} )} 
qvq1=v+2a(ω×v)+2(ω(ω×v)+ω×(ω×v)){\displaystyle {\phantom {q\mathbf {v} q^{-1}}}=\mathbf {v} +2a({\vec {\omega }}\times \mathbf {v} )+2({\cancel {-{\vec {\omega }}\cdot ({\vec {\omega }}\times \mathbf {v} )}}+{\vec {\omega }}\times ({\vec {\omega }}\times \mathbf {v} ))} 
qvq1=v+2a(ω×v)+2(ω×(ω×v)){\displaystyle {\phantom {q\mathbf {v} q^{-1}}}=\mathbf {v} +2a({\vec {\omega }}\times \mathbf {v} )+2({\vec {\omega }}\times ({\vec {\omega }}\times \mathbf {v} ))} 

where, in the second to last equality, the dot product of two orthogonal vectors is zero.

Connection with SU(2) spin matrices

edit

TheLie groupSU(2) can be used to represent three-dimensional rotations in complex2 × 2 matrices. The SU(2)-matrix corresponding to a rotation, in terms of its Euler parameters, is

U=( adicbicbia+di).{\displaystyle U={\begin{pmatrix}\ a-di&-c-bi\\c-bi&a+di\end{pmatrix}}.} 

which can be written as the sum

U=a (1001)ib (0110)ic (0ii0)id (1001)=aIibσxicσyidσz,{\displaystyle {\begin{aligned}U&=a\ {\begin{pmatrix}1&0\\0&1\end{pmatrix}}-ib\ {\begin{pmatrix}0&1\\1&0\end{pmatrix}}-ic\ {\begin{pmatrix}0&-i\\i&0\end{pmatrix}}-id\ {\begin{pmatrix}1&0\\0&-1\end{pmatrix}}\\&=a\,I-ib\,\sigma _{x}-ic\,\sigma _{y}-id\,\sigma _{z},\end{aligned}}} 

where theσi are thePauli spin matrices.

Rotation is given byX(x1σx+x2σy+x3σz)=UXU=(aIibσxicσyidσz)(x1σx+x2σy+x3σz)(aI+ibσx+icσy+idσz){\displaystyle X^{\prime }\equiv (x_{1}^{\prime }\sigma _{x}+x_{2}^{\prime }\sigma _{y}+x_{3}^{\prime }\sigma _{z})=U\;X\;U^{\dagger }=(a\,I-ib\,\sigma _{x}-ic\,\sigma _{y}-id\,\sigma _{z})(x_{1}\sigma _{x}+x_{2}\sigma _{y}+x_{3}\sigma _{z})(a\,I+ib\,\sigma _{x}+ic\,\sigma _{y}+id\,\sigma _{z})} , which it can be confirmed by multiplying out gives the Euler–Rodrigues formula as stated above.

Thus, the Euler parameters are the real and imaginary coordinates in an SU(2) matrix corresponding to an element of thespin group Spin(3), which maps by a double cover mapping to a rotation in theorthogonal group SO(3). This realizesR3{\displaystyle \mathbb {R} ^{3}}  as the unique three-dimensional irreduciblerepresentation of theLie group SU(2) ≈ Spin(3).

Cayley–Klein parameters

edit

The elements of the matrixU{\displaystyle U}  are known as theCayley–Klein parameters, after the mathematiciansArthur Cayley andFelix Klein,[a]

α=adiβ=cbiγ=cbiδ= a+di{\displaystyle {\begin{aligned}\alpha &=a-di&\beta &=-c-bi\\\gamma &=c-bi&\delta &=\ a+di\end{aligned}}} 

In terms of these parameters the Euler–Rodrigues formula can then also be written[2][6][a]

x=(12(α2γ2+δ2β2)12i(γ2α2+δ2β2)γδαβ12i(α2+γ2β2δ2)12(α2+γ2+β2+δ2)i(αβ+γδ)βδαγi(αγ+βδ)αδ+βγ)x.{\displaystyle {\vec {x}}'={\begin{pmatrix}{\frac {1}{2}}(\alpha ^{2}-\gamma ^{2}+\delta ^{2}-\beta ^{2})&{\frac {1}{2}}i(\gamma ^{2}-\alpha ^{2}+\delta ^{2}-\beta ^{2})&\gamma \delta -\alpha \beta \\{\frac {1}{2}}i(\alpha ^{2}+\gamma ^{2}-\beta ^{2}-\delta ^{2})&{\frac {1}{2}}(\alpha ^{2}+\gamma ^{2}+\beta ^{2}+\delta ^{2})&-i(\alpha \beta +\gamma \delta )\\\beta \delta -\alpha \gamma &i(\alpha \gamma +\beta \delta )&\alpha \delta +\beta \gamma \end{pmatrix}}{\vec {x}}.} 

Klein andSommerfeld used the parameters extensively in connection withMöbius transformations andcross-ratios in their discussion of gyroscope dynamics.[3][7]

See also

edit

Notes

edit
  1. ^abGoldstein (1980)[2] considers apassive (contravariant, or "alias") transformation, rather than theactive (covariant, or "alibi") transformation here.
    His matrixA{\displaystyle A}  therefore corresponds to the transpose of the Euler–Rodrigues matrix given at the head of this article, or, equivalently, to the Euler–Rodrigues matrix for an active rotation ofφ{\displaystyle -\varphi }  rather thanφ{\displaystyle \varphi } . Taking this into account, it is apparent that hise1{\displaystyle e_{1}} ,e2{\displaystyle e_{2}} , ande3{\displaystyle e_{3}}  in eqn 4-67 (p.153) are equal tob{\displaystyle b} ,c{\displaystyle c} , andd{\displaystyle d}  here. However hisα{\displaystyle \alpha } ,β{\displaystyle \beta } ,γ{\displaystyle \gamma } , andδ{\displaystyle \delta } , the elements of his matrixQ{\displaystyle Q} , correspond to the elements of matrixU{\displaystyle U^{\dagger }}  here, rather than the matrixU{\displaystyle U} . This then gives his parametrization
    α=a+diβ=c+biγ=c+biδ=adi{\displaystyle {\begin{aligned}\alpha &=\;\;a+di&\beta &=c+bi\\\gamma &=-c+bi&\delta &=a-di\end{aligned}}} 
    In consequence, while his formula (4-64) is identical symbol-by-symbol to the transformation matrix given here, using his definitions forα{\displaystyle \alpha } ,β{\displaystyle \beta } ,γ{\displaystyle \gamma } , andδ{\displaystyle \delta }  it gives his matrixA{\displaystyle A} , whereas the definitions based on the matrixU{\displaystyle U}  above lead to the (active) Euler–Rodrigues matrix presented here.
    Pennestrì et al (2016)[3] similarly define theirα{\displaystyle \alpha } ,β{\displaystyle \beta } ,γ{\displaystyle \gamma } , andδ{\displaystyle \delta }  in terms of the passive matrixQ{\displaystyle Q}  rather than the active matrixU{\displaystyle U} .
    The parametrization here accords with that used in eg Sakurai and Napolitano (2020),[4] p. 165, and Altmann (1986),[5] eqn. 5 p. 113 / eqn. 9 p. 117.

Further reading

edit

References

edit
  1. ^e.g.Felix Klein (1897),The mathematical theory of the top, New York: Scribner. p.4
  2. ^abGoldstein, H. (1980), "The Cayley-Klein Parameters and Related Quantities". §4-5 inClassical Mechanics, 2nd ed. Reading, MA: Addison-Wesley. p. 153
  3. ^abE. Pennestrì, P.P. Valentini, G. Figliolini, J. Angeles (2016), "Dual Cayley–Klein parameters and Möbius transform: Theory and applications",Mechanism and Machine Theory106(January):50-67.doi:10.1016/j.mechmachtheory.2016.08.008.pdf available viaResearchGate
  4. ^Sakurai, J. J.; Napolitano, Jim (2020).Modern Quantum Mechanics (3rd ed.). Cambridge.ISBN 978-1-108-47322-4.OCLC 1202949320.{{cite book}}: CS1 maint: location missing publisher (link)
  5. ^Altmann, S. (1986),Rotations, Quaternions and Double Groups. Oxford:Clarendon Press.ISBN 0-19-855372-2
  6. ^Weisstein, Eric W.,Cayley-Klein Parameters,MathWorld. Accessed 2024-05-10
  7. ^Felix Klein andArnold Sommerfeld,Über die Theorie des Kreisels, vol 1. (Teubner, 1897). Translated (2008) as:The Theory of the Top, vol 1. Boston: Birkhauser.ISBN 0817647201

[8]ページ先頭

©2009-2025 Movatter.jp