Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dyadics

From Wikipedia, the free encyclopedia
(Redirected fromDyadic tensor)
Second order tensor in vector algebra

Inmathematics, specificallymultilinear algebra, adyadic ordyadic tensor is a secondordertensor, written in a notation that fits in withvector algebra.

There are numerous ways to multiply twoEuclidean vectors. Thedot product takes in two vectors and returns ascalar, while thecross product[a] returns apseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics,physics, andengineering. Thedyadic product takes in two vectors and returns a second order tensor called adyadic in this context. A dyadic can be used to contain physical or geometric information, although in general there is no direct way of geometrically interpreting it.

The dyadic product isdistributive overvector addition, andassociative withscalar multiplication. Therefore, the dyadic product islinear in both of its operands. In general, two dyadics can be added to get another dyadic, andmultiplied by numbers to scale the dyadic. However, the product is notcommutative; changing the order of the vectors results in a different dyadic.

The formalism ofdyadic algebra is an extension of vector algebra to include the dyadic product of vectors. The dyadic product is also associative with the dot and cross products with other vectors, which allows the dot, cross, and dyadic products to be combined to obtain other scalars, vectors, or dyadics.

It also has some aspects ofmatrix algebra, as the numerical components of vectors can be arranged intorow and column vectors, and those of second order tensors insquare matrices. Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents.

The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations.

Dyadic notation was first established byJosiah Willard Gibbs in 1884. The notation and terminology are relatively obsolete today. Its uses in physics includecontinuum mechanics andelectromagnetism.

In this article, upper-case bold variables denote dyadics (including dyads) whereas lower-case bold variables denote vectors. An alternative notation uses respectively double and single over- or underbars.

Definitions and terminology

[edit]

Dyadic, outer, and tensor products

[edit]

Adyad is atensor oforder two andrank one, and is the dyadic product of twovectors (complex vectors in general), whereas adyadic is a generaltensor oforder two (which may be full rank or not).

There are several equivalent terms and notations for this product:

In the dyadic context they all have the same definition and meaning, and are used synonymously, although thetensor product is an instance of the more general and abstract use of the term.

Three-dimensional Euclidean space

[edit]

To illustrate the equivalent usage, considerthree-dimensionalEuclidean space, letting:

a=a1i+a2j+a3kb=b1i+b2j+b3k{\displaystyle {\begin{aligned}\mathbf {a} &=a_{1}\mathbf {i} +a_{2}\mathbf {j} +a_{3}\mathbf {k} \\\mathbf {b} &=b_{1}\mathbf {i} +b_{2}\mathbf {j} +b_{3}\mathbf {k} \end{aligned}}}

be two vectors wherei,j,k (also denotede1,e2,e3) are the standardbasis vectors in thisvector space (see alsoCartesian coordinates). Then the dyadic product ofa andb can be represented as a sum:

ab=a1b1ii+a1b2ij+a1b3ik+a2b1ji+a2b2jj+a2b3jk+a3b1ki+a3b2kj+a3b3kk{\displaystyle {\begin{aligned}\mathbf {ab} =\qquad &a_{1}b_{1}\mathbf {ii} +a_{1}b_{2}\mathbf {ij} +a_{1}b_{3}\mathbf {ik} \\{}+{}&a_{2}b_{1}\mathbf {ji} +a_{2}b_{2}\mathbf {jj} +a_{2}b_{3}\mathbf {jk} \\{}+{}&a_{3}b_{1}\mathbf {ki} +a_{3}b_{2}\mathbf {kj} +a_{3}b_{3}\mathbf {kk} \end{aligned}}}

or by extension from row and column vectors, a 3×3 matrix (also the result of the outer product or tensor product ofa andb):

abababT=(a1a2a3)(b1b2b3)=(a1b1a1b2a1b3a2b1a2b2a2b3a3b1a3b2a3b3).{\displaystyle \mathbf {ab} \equiv \mathbf {a} \otimes \mathbf {b} \equiv \mathbf {ab} ^{\mathsf {T}}={\begin{pmatrix}a_{1}\\a_{2}\\a_{3}\end{pmatrix}}{\begin{pmatrix}b_{1}&b_{2}&b_{3}\end{pmatrix}}={\begin{pmatrix}a_{1}b_{1}&a_{1}b_{2}&a_{1}b_{3}\\a_{2}b_{1}&a_{2}b_{2}&a_{2}b_{3}\\a_{3}b_{1}&a_{3}b_{2}&a_{3}b_{3}\end{pmatrix}}.}

Just as the standard basis (and unit) vectorsi,j,k, have the representations:

i=(100),j=(010),k=(001){\displaystyle {\begin{aligned}\mathbf {i} &={\begin{pmatrix}1\\0\\0\end{pmatrix}},&\mathbf {j} &={\begin{pmatrix}0\\1\\0\end{pmatrix}},&\mathbf {k} &={\begin{pmatrix}0\\0\\1\end{pmatrix}}\end{aligned}}}

(which can be transposed), thestandard basis (and unit) dyads have the representation:

ii=(100000000),ij=(010000000),ik=(001000000)ji=(000100000),jj=(000010000),jk=(000001000)ki=(000000100),kj=(000000010),kk=(000000001){\displaystyle {\begin{aligned}\mathbf {ii} &={\begin{pmatrix}1&0&0\\0&0&0\\0&0&0\end{pmatrix}},&\mathbf {ij} &={\begin{pmatrix}0&1&0\\0&0&0\\0&0&0\end{pmatrix}},&\mathbf {ik} &={\begin{pmatrix}0&0&1\\0&0&0\\0&0&0\end{pmatrix}}\\\mathbf {ji} &={\begin{pmatrix}0&0&0\\1&0&0\\0&0&0\end{pmatrix}},&\mathbf {jj} &={\begin{pmatrix}0&0&0\\0&1&0\\0&0&0\end{pmatrix}},&\mathbf {jk} &={\begin{pmatrix}0&0&0\\0&0&1\\0&0&0\end{pmatrix}}\\\mathbf {ki} &={\begin{pmatrix}0&0&0\\0&0&0\\1&0&0\end{pmatrix}},&\mathbf {kj} &={\begin{pmatrix}0&0&0\\0&0&0\\0&1&0\end{pmatrix}},&\mathbf {kk} &={\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}}\end{aligned}}}

For a simple numerical example in the standard basis:

A=2ij+32ji8πjk+223kk=2(010000000)+32(000100000)8π(000001000)+223(000000001)=(0203208π00223){\displaystyle {\begin{aligned}\mathbf {A} &=2\mathbf {ij} +{\frac {\sqrt {3}}{2}}\mathbf {ji} -8\pi \mathbf {jk} +{\frac {2{\sqrt {2}}}{3}}\mathbf {kk} \\[2pt]&=2{\begin{pmatrix}0&1&0\\0&0&0\\0&0&0\end{pmatrix}}+{\frac {\sqrt {3}}{2}}{\begin{pmatrix}0&0&0\\1&0&0\\0&0&0\end{pmatrix}}-8\pi {\begin{pmatrix}0&0&0\\0&0&1\\0&0&0\end{pmatrix}}+{\frac {2{\sqrt {2}}}{3}}{\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}}\\[2pt]&={\begin{pmatrix}0&2&0\\{\frac {\sqrt {3}}{2}}&0&-8\pi \\0&0&{\frac {2{\sqrt {2}}}{3}}\end{pmatrix}}\end{aligned}}}

N-dimensional Euclidean space

[edit]

If the Euclidean space isN-dimensional, and

a=i=1Naiei=a1e1+a2e2++aNeNb=j=1Nbjej=b1e1+b2e2++bNeN{\displaystyle {\begin{aligned}\mathbf {a} &=\sum _{i=1}^{N}a_{i}\mathbf {e} _{i}=a_{1}\mathbf {e} _{1}+a_{2}\mathbf {e} _{2}+{\ldots }+a_{N}\mathbf {e} _{N}\\\mathbf {b} &=\sum _{j=1}^{N}b_{j}\mathbf {e} _{j}=b_{1}\mathbf {e} _{1}+b_{2}\mathbf {e} _{2}+\ldots +b_{N}\mathbf {e} _{N}\end{aligned}}}

whereei andej are thestandard basis vectors inN-dimensions (the indexi onei selects a specific vector, not a component of the vector as inai), then in algebraic form their dyadic product is:

ab=j=1Ni=1Naibjeiej.{\displaystyle \mathbf {ab} =\sum _{j=1}^{N}\sum _{i=1}^{N}a_{i}b_{j}\mathbf {e} _{i}\mathbf {e} _{j}.}

This is known as thenonion form of the dyad. Their outer/tensor product in matrix form is:

ab=abT=(a1a2aN)(b1b2bN)=(a1b1a1b2a1bNa2b1a2b2a2bNaNb1aNb2aNbN).{\displaystyle \mathbf {ab} =\mathbf {ab} ^{\mathsf {T}}={\begin{pmatrix}a_{1}\\a_{2}\\\vdots \\a_{N}\end{pmatrix}}{\begin{pmatrix}b_{1}&b_{2}&\cdots &b_{N}\end{pmatrix}}={\begin{pmatrix}a_{1}b_{1}&a_{1}b_{2}&\cdots &a_{1}b_{N}\\a_{2}b_{1}&a_{2}b_{2}&\cdots &a_{2}b_{N}\\\vdots &\vdots &\ddots &\vdots \\a_{N}b_{1}&a_{N}b_{2}&\cdots &a_{N}b_{N}\end{pmatrix}}.}

Adyadic polynomialA, otherwise known as a dyadic, is formed from multiple vectorsai andbj:

A=iaibi=a1b1+a2b2+a3b3+{\displaystyle \mathbf {A} =\sum _{i}\mathbf {a} _{i}\mathbf {b} _{i}=\mathbf {a} _{1}\mathbf {b} _{1}+\mathbf {a} _{2}\mathbf {b} _{2}+\mathbf {a} _{3}\mathbf {b} _{3}+\ldots }

A dyadic which cannot be reduced to a sum of less thanN dyads is said to be complete. In this case, the forming vectors are non-coplanar,[dubiousdiscuss] seeChen (1983).

Classification

[edit]

The following table classifies dyadics:

DeterminantAdjugateMatrix and itsrank
Zero= 0= 0= 0; rank 0: all zeroes
Linear= 0= 0≠ 0; rank 1: at least one non-zero element and all 2 × 2 subdeterminants zero (single dyadic)
Planar= 0≠ 0 (single dyadic)≠ 0; rank 2: at least one non-zero 2 × 2 subdeterminant
Complete≠ 0≠ 0≠ 0; rank 3: non-zero determinant

Identities

[edit]

The following identities are a direct consequence of the definition of the tensor product:[1]

  1. Compatible withscalar multiplication:
    (αa)b=a(αb)=α(ab){\displaystyle (\alpha \mathbf {a} )\mathbf {b} =\mathbf {a} (\alpha \mathbf {b} )=\alpha (\mathbf {a} \mathbf {b} )}
    for any scalarα{\displaystyle \alpha }.
  2. Distributive overvector addition:
    a(b+c)=ab+ac(a+b)c=ac+bc{\displaystyle {\begin{aligned}\mathbf {a} (\mathbf {b} +\mathbf {c} )&=\mathbf {a} \mathbf {b} +\mathbf {a} \mathbf {c} \\(\mathbf {a} +\mathbf {b} )\mathbf {c} &=\mathbf {a} \mathbf {c} +\mathbf {b} \mathbf {c} \end{aligned}}}

Dyadic algebra

[edit]

Product of dyadic and vector

[edit]

There are four operations defined on a vector and dyadic, constructed from the products defined on vectors.

LeftRight
Dot productc(ab)=(ca)b{\displaystyle \mathbf {c} \cdot \left(\mathbf {a} \mathbf {b} \right)=\left(\mathbf {c} \cdot \mathbf {a} \right)\mathbf {b} }(ab)c=a(bc){\displaystyle \left(\mathbf {a} \mathbf {b} \right)\cdot \mathbf {c} =\mathbf {a} \left(\mathbf {b} \cdot \mathbf {c} \right)}
Cross productc×(ab)=(c×a)b{\displaystyle \mathbf {c} \times \left(\mathbf {ab} \right)=\left(\mathbf {c} \times \mathbf {a} \right)\mathbf {b} }(ab)×c=a(b×c){\displaystyle \left(\mathbf {ab} \right)\times \mathbf {c} =\mathbf {a} \left(\mathbf {b} \times \mathbf {c} \right)}

Product of dyadic and dyadic

[edit]

There are five operations for a dyadic to another dyadic. Leta,b,c,d be real vectors. Then:

DotCross
DotDot product

(ab)(cd)=a(bc)d=(bc)ad{\displaystyle {\begin{aligned}\left(\mathbf {a} \mathbf {b} \right)\cdot \left(\mathbf {c} \mathbf {d} \right)&=\mathbf {a} \left(\mathbf {b} \cdot \mathbf {c} \right)\mathbf {d} \\&=\left(\mathbf {b} \cdot \mathbf {c} \right)\mathbf {a} \mathbf {d} \end{aligned}}}

Double–dot product

(ab)(cd)=c(ab)d=(ac)(bd){\displaystyle {\begin{aligned}\left(\mathbf {ab} \right)\mathbin {{}_{\,\centerdot }^{\,\centerdot }} \left(\mathbf {cd} \right)&=\mathbf {c} \cdot \left(\mathbf {ab} \right)\cdot \mathbf {d} \\&=\left(\mathbf {a} \cdot \mathbf {c} \right)\left(\mathbf {b} \cdot \mathbf {d} \right)\end{aligned}}}

and

ab_cd=(ad)(bc){\displaystyle \mathbf {ab} \mathbin {\underline {{}_{\,\centerdot }^{\,\centerdot }}} \mathbf {cd} =\left(\mathbf {a} \cdot \mathbf {d} \right)\left(\mathbf {b} \cdot \mathbf {c} \right)}

Dot–cross product

(ab)×(cd)=(ac)(b×d){\displaystyle \left(\mathbf {ab} \right)\mathbin {{}_{\,\centerdot }^{\times }} \left(\mathbf {c} \mathbf {d} \right)=\left(\mathbf {a} \cdot \mathbf {c} \right)\left(\mathbf {b} \times \mathbf {d} \right)}

CrossCross–dot product

(ab)×(cd)=(a×c)(bd){\displaystyle \left(\mathbf {ab} \right)\mathbin {{}_{\times }^{\,\centerdot }} \left(\mathbf {cd} \right)=\left(\mathbf {a} \times \mathbf {c} \right)\left(\mathbf {b} \cdot \mathbf {d} \right)}

Double–cross product

(ab)××(cd)=(a×c)(b×d){\displaystyle \left(\mathbf {ab} \right)\mathbin {{}_{\times }^{\times }} \left(\mathbf {cd} \right)=\left(\mathbf {a} \times \mathbf {c} \right)\left(\mathbf {b} \times \mathbf {d} \right)}

Letting

A=iaibi,B=jcjdj{\displaystyle \mathbf {A} =\sum _{i}\mathbf {a} _{i}\mathbf {b} _{i},\quad \mathbf {B} =\sum _{j}\mathbf {c} _{j}\mathbf {d} _{j}}

be two general dyadics, we have:

DotCross
DotDot product

AB=i,j(bicj)aidj{\displaystyle \mathbf {A} \cdot \mathbf {B} =\sum _{i,j}\left(\mathbf {b} _{i}\cdot \mathbf {c} _{j}\right)\mathbf {a} _{i}\mathbf {d} _{j}}

Double–dot product

AB=i,j(aicj)(bidj){\displaystyle {\begin{aligned}\mathbf {A} \mathbin {{}_{\centerdot }^{\centerdot }} \mathbf {B} &=\sum _{i,j}\left(\mathbf {a} _{i}\cdot \mathbf {c} _{j}\right)\left(\mathbf {b} _{i}\cdot \mathbf {d} _{j}\right)\end{aligned}}}

and

A_B=i,j(aidj)(bicj){\displaystyle {\begin{aligned}\mathbf {A} \mathbin {\underline {{}_{\centerdot }^{\centerdot }}} \mathbf {B} &=\sum _{i,j}\left(\mathbf {a} _{i}\cdot \mathbf {d} _{j}\right)\left(\mathbf {b} _{i}\cdot \mathbf {c} _{j}\right)\end{aligned}}}

Dot–cross product

A×B=i,j(aicj)(bi×dj){\displaystyle \mathbf {A} \mathbin {{}_{\,\centerdot }^{\times }} \mathbf {B} =\sum _{i,j}\left(\mathbf {a} _{i}\cdot \mathbf {c} _{j}\right)\left(\mathbf {b} _{i}\times \mathbf {d} _{j}\right)}

CrossCross–dot product

A×B=i,j(ai×cj)(bidj){\displaystyle \mathbf {A} \mathbin {{}_{\times }^{\,\centerdot }} \mathbf {B} =\sum _{i,j}\left(\mathbf {a} _{i}\times \mathbf {c} _{j}\right)\left(\mathbf {b} _{i}\cdot \mathbf {d} _{j}\right)}

Double–cross product

A××B=i,j(ai×cj)(bi×dj){\displaystyle \mathbf {A} \mathbin {{}_{\times }^{\times }} \mathbf {B} =\sum _{i,j}\left(\mathbf {a} _{i}\times \mathbf {c} _{j}\right)\left(\mathbf {b} _{i}\times \mathbf {d} _{j}\right)}

Doubledot product

[edit]

The first definition of the doubledot product is theFrobenius inner product,

tr(ABT)=i,jtr(aibiTdjcjT)=i,jtr(cjTaibiTdj)=i,j(aicj)(bidj)=AB{\displaystyle {\begin{aligned}\operatorname {tr} \left(\mathbf {A} \mathbf {B} ^{\mathsf {T}}\right)&=\sum _{i,j}\operatorname {tr} \left(\mathbf {a} _{i}\mathbf {b} _{i}^{\mathsf {T}}\mathbf {d} _{j}\mathbf {c} _{j}^{\mathsf {T}}\right)\\&=\sum _{i,j}\operatorname {tr} \left(\mathbf {c} _{j}^{\mathsf {T}}\mathbf {a} _{i}\mathbf {b} _{i}^{\mathsf {T}}\mathbf {d} _{j}\right)\\&=\sum _{i,j}(\mathbf {a} _{i}\cdot \mathbf {c} _{j})(\mathbf {b} _{i}\cdot \mathbf {d} _{j})\\&=\mathbf {A} \mathbin {{}_{\centerdot }^{\centerdot }} \mathbf {B} \end{aligned}}}

Furthermore, since,

AT=i,j(aibjT)T=i,jbiajT{\displaystyle {\begin{aligned}\mathbf {A} ^{\mathsf {T}}&=\sum _{i,j}\left(\mathbf {a} _{i}\mathbf {b} _{j}^{\mathsf {T}}\right)^{\mathsf {T}}\\&=\sum _{i,j}\mathbf {b} _{i}\mathbf {a} _{j}^{\mathsf {T}}\end{aligned}}}

we get that,

AB=A_BT{\displaystyle \mathbf {A} \mathbin {{}_{\centerdot }^{\centerdot }} \mathbf {B} =\mathbf {A} \mathbin {\underline {{}_{\centerdot }^{\centerdot }}} \mathbf {B} ^{\mathsf {T}}}

so the second possible definition of the double-dot product is just the first with an additional transposition on the second dyadic. For these reasons, the first definition of the double-dot product is preferred, though some authors still use the second.

Doublecross product

[edit]

We can see that, for any dyad formed from two vectorsa andb, its double cross product is zero.

(ab)××(ab)=(a×a)(b×b)=0{\displaystyle \left(\mathbf {ab} \right)\mathbin {{}_{\times }^{\times }} \left(\mathbf {ab} \right)=\left(\mathbf {a} \times \mathbf {a} \right)\left(\mathbf {b} \times \mathbf {b} \right)=0}

However, by definition, a dyadic double-cross product on itself will generally be non-zero. For example, a dyadicA composed of six different vectors

A=i=13aibi{\displaystyle \mathbf {A} =\sum _{i=1}^{3}\mathbf {a} _{i}\mathbf {b} _{i}}

has a non-zero self-double-cross product of

A××A=2[(a1×a2)(b1×b2)+(a2×a3)(b2×b3)+(a3×a1)(b3×b1)]{\displaystyle \mathbf {A} \mathbin {{}_{\times }^{\times }} \mathbf {A} =2\left[\left(\mathbf {a} _{1}\times \mathbf {a} _{2}\right)\left(\mathbf {b} _{1}\times \mathbf {b} _{2}\right)+\left(\mathbf {a} _{2}\times \mathbf {a} _{3}\right)\left(\mathbf {b} _{2}\times \mathbf {b} _{3}\right)+\left(\mathbf {a} _{3}\times \mathbf {a} _{1}\right)\left(\mathbf {b} _{3}\times \mathbf {b} _{1}\right)\right]}

Tensor contraction

[edit]
Main article:Tensor contraction

Thespur orexpansion factor arises from the formal expansion of the dyadic in a coordinate basis by replacing each dyadic product by a dot product of vectors:

|A|=A11ii+A12ij+A13ik+A21ji+A22jj+A23jk+A31ki+A32kj+A33kk=A11+A22+A33{\displaystyle {\begin{aligned}|\mathbf {A} |=\qquad &A_{11}\mathbf {i} \cdot \mathbf {i} +A_{12}\mathbf {i} \cdot \mathbf {j} +A_{13}\mathbf {i} \cdot \mathbf {k} \\{}+{}&A_{21}\mathbf {j} \cdot \mathbf {i} +A_{22}\mathbf {j} \cdot \mathbf {j} +A_{23}\mathbf {j} \cdot \mathbf {k} \\{}+{}&A_{31}\mathbf {k} \cdot \mathbf {i} +A_{32}\mathbf {k} \cdot \mathbf {j} +A_{33}\mathbf {k} \cdot \mathbf {k} \\[6pt]=\qquad &A_{11}+A_{22}+A_{33}\end{aligned}}}

in index notation this is the contraction of indices on the dyadic:

|A|=iAii{\displaystyle |\mathbf {A} |=\sum _{i}A_{i}{}^{i}}

In three dimensions only, therotation factor arises by replacing every dyadic product by across product

A=A11i×i+A12i×j+A13i×k+A21j×i+A22j×j+A23j×k+A31k×i+A32k×j+A33k×k=A12kA13jA21k+A23i+A31jA32i=(A23A32)i+(A31A13)j+(A12A21)k{\displaystyle {\begin{aligned}\langle \mathbf {A} \rangle =\qquad &A_{11}\mathbf {i} \times \mathbf {i} +A_{12}\mathbf {i} \times \mathbf {j} +A_{13}\mathbf {i} \times \mathbf {k} \\{}+{}&A_{21}\mathbf {j} \times \mathbf {i} +A_{22}\mathbf {j} \times \mathbf {j} +A_{23}\mathbf {j} \times \mathbf {k} \\{}+{}&A_{31}\mathbf {k} \times \mathbf {i} +A_{32}\mathbf {k} \times \mathbf {j} +A_{33}\mathbf {k} \times \mathbf {k} \\[6pt]=\qquad &A_{12}\mathbf {k} -A_{13}\mathbf {j} -A_{21}\mathbf {k} \\{}+{}&A_{23}\mathbf {i} +A_{31}\mathbf {j} -A_{32}\mathbf {i} \\[6pt]=\qquad &\left(A_{23}-A_{32}\right)\mathbf {i} +\left(A_{31}-A_{13}\right)\mathbf {j} +\left(A_{12}-A_{21}\right)\mathbf {k} \\\end{aligned}}}

In index notation this is the contraction ofA with theLevi-Civita tensor

A=jkϵijkAjk.{\displaystyle \langle \mathbf {A} \rangle =\sum _{jk}{\epsilon _{i}}^{jk}A_{jk}.}

Unit dyadic

[edit]

There exists a unit dyadic, denoted byI, such that, for any vectora,

Ia=aI=a{\displaystyle \mathbf {I} \cdot \mathbf {a} =\mathbf {a} \cdot \mathbf {I} =\mathbf {a} }

Given a basis of 3 vectorsa,b andc, withreciprocal basisa^,b^,c^{\displaystyle {\hat {\mathbf {a} }},{\hat {\mathbf {b} }},{\hat {\mathbf {c} }}}, the unit dyadic is expressed by

I=aa^+bb^+cc^{\displaystyle \mathbf {I} =\mathbf {a} {\hat {\mathbf {a} }}+\mathbf {b} {\hat {\mathbf {b} }}+\mathbf {c} {\hat {\mathbf {c} }}}

In the standard basis (for definitions ofi,j,k see in the above section§ Three-dimensional Euclidean space),

I=ii+jj+kk{\displaystyle \mathbf {I} =\mathbf {ii} +\mathbf {jj} +\mathbf {kk} }

Explicitly, the dot product to the right of the unit dyadic is

Ia=(ii+jj+kk)a=i(ia)+j(ja)+k(ka)=iax+jay+kaz=a{\displaystyle {\begin{aligned}\mathbf {I} \cdot \mathbf {a} &=(\mathbf {i} \mathbf {i} +\mathbf {j} \mathbf {j} +\mathbf {k} \mathbf {k} )\cdot \mathbf {a} \\&=\mathbf {i} (\mathbf {i} \cdot \mathbf {a} )+\mathbf {j} (\mathbf {j} \cdot \mathbf {a} )+\mathbf {k} (\mathbf {k} \cdot \mathbf {a} )\\&=\mathbf {i} a_{x}+\mathbf {j} a_{y}+\mathbf {k} a_{z}\\&=\mathbf {a} \end{aligned}}}

and to the left

aI=a(ii+jj+kk)=(ai)i+(aj)j+(ak)k=axi+ayj+azk=a{\displaystyle {\begin{aligned}\mathbf {a} \cdot \mathbf {I} &=\mathbf {a} \cdot (\mathbf {i} \mathbf {i} +\mathbf {j} \mathbf {j} +\mathbf {k} \mathbf {k} )\\&=(\mathbf {a} \cdot \mathbf {i} )\mathbf {i} +(\mathbf {a} \cdot \mathbf {j} )\mathbf {j} +(\mathbf {a} \cdot \mathbf {k} )\mathbf {k} \\&=a_{x}\mathbf {i} +a_{y}\mathbf {j} +a_{z}\mathbf {k} \\&=\mathbf {a} \end{aligned}}}

The corresponding matrix is

I=(100010001){\displaystyle \mathbf {I} ={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\\end{pmatrix}}}

This can be put on more careful foundations (explaining what the logical content of "juxtaposing notation" could possibly mean) using the language of tensor products. IfV is a finite-dimensionalvector space, a dyadic tensor onV is an elementary tensor in the tensor product ofV with itsdual space.

The tensor product ofV and its dual space isisomorphic to the space oflinear maps fromV toV: a dyadic tensorvf is simply the linear map sending anyw inV tof(w)v. WhenV is Euclideann-space, we can use theinner product to identify the dual space withV itself, making a dyadic tensor an elementary tensor product of two vectors in Euclidean space.

In this sense, the unit dyadicij is the function from 3-space to itself sendinga1i +a2j +a3k toa2i, andjj sends this sum toa2j. Now it is revealed in what (precise) senseii +jj +kk is the identity: it sendsa1i +a2j +a3k to itself because its effect is to sum each unit vector in the standard basis scaled by the coefficient of the vector in that basis.

Properties of unit dyadics

[edit]
(a×I)(b×I)=ba(ab)II×(ab)=b×aI××A=(AI)IATI(ab)=(Ia)b=ab=tr(ab){\displaystyle {\begin{aligned}\left(\mathbf {a} \times \mathbf {I} \right)\cdot \left(\mathbf {b} \times \mathbf {I} \right)&=\mathbf {ba} -\left(\mathbf {a} \cdot \mathbf {b} \right)\mathbf {I} \\\mathbf {I} {}_{\times }^{\,\centerdot }\left(\mathbf {ab} \right)&=\mathbf {b} \times \mathbf {a} \\\mathbf {I} {}_{\times }^{\times }\mathbf {A} &=(\mathbf {A} {}_{\,\centerdot }^{\,\centerdot }\mathbf {I} )\mathbf {I} -\mathbf {A} ^{\mathsf {T}}\\\mathbf {I} {}_{\,\centerdot }^{\,\centerdot }\left(\mathbf {ab} \right)&=\left(\mathbf {I} \cdot \mathbf {a} \right)\cdot \mathbf {b} =\mathbf {a} \cdot \mathbf {b} =\mathrm {tr} \left(\mathbf {ab} \right)\end{aligned}}}

where "tr" denotes thetrace.

Examples

[edit]

Vector projection and rejection

[edit]

A nonzero vectora can always be split into two perpendicular components, one parallel (‖) to the direction of aunit vectorn, and one perpendicular (⊥) to it;

a=a+a{\displaystyle \mathbf {a} =\mathbf {a} _{\parallel }+\mathbf {a} _{\perp }}

The parallel component is found byvector projection, which is equivalent to the dot product ofa with the dyadicnn,

a=n(na)=(nn)a{\displaystyle \mathbf {a} _{\parallel }=\mathbf {n} (\mathbf {n} \cdot \mathbf {a} )=(\mathbf {nn} )\cdot \mathbf {a} }

and the perpendicular component is found fromvector rejection, which is equivalent to the dot product ofa with the dyadicInn,

a=an(na)=(Inn)a{\displaystyle \mathbf {a} _{\perp }=\mathbf {a} -\mathbf {n} (\mathbf {n} \cdot \mathbf {a} )=(\mathbf {I} -\mathbf {nn} )\cdot \mathbf {a} }

Rotation dyadic

[edit]
Further information:Axis–angle representation

2d rotations

[edit]

The dyadic

J=jiij=(0110){\displaystyle \mathbf {J} =\mathbf {ji} -\mathbf {ij} ={\begin{pmatrix}0&-1\\1&0\end{pmatrix}}}

is a 90° anticlockwiserotation operator in 2d. It can be left-dotted with a vectorr =xi +yj to produce the vector,

(jiij)(xi+yj)=xjiixiji+yjijyijj=yi+xj,{\displaystyle (\mathbf {ji} -\mathbf {ij} )\cdot (x\mathbf {i} +y\mathbf {j} )=x\mathbf {ji} \cdot \mathbf {i} -x\mathbf {ij} \cdot \mathbf {i} +y\mathbf {ji} \cdot \mathbf {j} -y\mathbf {ij} \cdot \mathbf {j} =-y\mathbf {i} +x\mathbf {j} ,}

in summary

Jr=rrot{\displaystyle \mathbf {J} \cdot \mathbf {r} =\mathbf {r} _{\mathrm {rot} }}

or in matrix notation

(0110)(xy)=(yx).{\displaystyle {\begin{pmatrix}0&-1\\1&0\end{pmatrix}}{\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}-y\\x\end{pmatrix}}.}

For any angleθ, the 2d rotation dyadic for a rotation anti-clockwise in the plane is

R=Icosθ+Jsinθ=(ii+jj)cosθ+(jiij)sinθ=(cosθsinθsinθcosθ){\displaystyle \mathbf {R} =\mathbf {I} \cos \theta +\mathbf {J} \sin \theta =(\mathbf {ii} +\mathbf {jj} )\cos \theta +(\mathbf {ji} -\mathbf {ij} )\sin \theta ={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\;\cos \theta \end{pmatrix}}}

whereI andJ are as above, and the rotation of any 2d vectora =axi +ayj is

arot=Ra{\displaystyle \mathbf {a} _{\mathrm {rot} }=\mathbf {R} \cdot \mathbf {a} }

3d rotations

[edit]

A general 3d rotation of a vectora, about an axis in the direction of aunit vectorω and anticlockwise through angleθ, can be performed usingRodrigues' rotation formula in the dyadic form

arot=Ra,{\displaystyle \mathbf {a} _{\mathrm {rot} }=\mathbf {R} \cdot \mathbf {a} \,,}

where the rotation dyadic is

R=Icosθ+Ωsinθ+ωω(1cosθ),{\displaystyle \mathbf {R} =\mathbf {I} \cos \theta +{\boldsymbol {\Omega }}\sin \theta +{\boldsymbol {\omega \omega }}(1-\cos \theta )\,,}

and the Cartesian entries ofω also form those of the dyadic

Ω=ωx(kjjk)+ωy(ikki)+ωz(jiij),{\displaystyle {\boldsymbol {\Omega }}=\omega _{x}(\mathbf {kj} -\mathbf {jk} )+\omega _{y}(\mathbf {ik} -\mathbf {ki} )+\omega _{z}(\mathbf {ji} -\mathbf {ij} )\,,}

The effect ofΩ ona is the cross product

Ωa=ω×a{\displaystyle {\boldsymbol {\Omega }}\cdot \mathbf {a} ={\boldsymbol {\omega }}\times \mathbf {a} }

which is the dyadic form thecross product matrix with a column vector.

Lorentz transformation

[edit]

Inspecial relativity, theLorentz boost with speedv in the direction of a unit vectorn can be expressed as

t=γ(tvnrc2){\displaystyle t'=\gamma \left(t-{\frac {v\mathbf {n} \cdot \mathbf {r} }{c^{2}}}\right)}
r=[I+(γ1)nn]rγvnt{\displaystyle \mathbf {r} '=[\mathbf {I} +(\gamma -1)\mathbf {nn} ]\cdot \mathbf {r} -\gamma v\mathbf {n} t}

where

γ=11v2c2{\displaystyle \gamma ={\frac {1}{\sqrt {1-{\dfrac {v^{2}}{c^{2}}}}}}}

is theLorentz factor.

Related terms

[edit]

Some authors generalize from the termdyadic to related termstriadic,tetradic andpolyadic.[2]

See also

[edit]

Notes

[edit]

Explanatory notes

[edit]
  1. ^The cross product only exists in oriented three and seven dimensionalinner product spaces and only has nice properties in three dimensional inner product spaces. The relatedexterior product exists for all vector spaces.

Citations

[edit]
  1. ^Spencer (1992), page 19.
  2. ^For example,I. V. Lindell & A. P. Kiselev (2001)."Polyadic Methods in Elastodynamics"(PDF).Progress in Electromagnetics Research.31:113–154.doi:10.2528/PIER00051701.

References

[edit]

External links

[edit]
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dyadics&oldid=1338836767"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp