Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Determinantal point process

From Wikipedia, the free encyclopedia
Stochastic point process in mathematics

Inmathematics, adeterminantal point process is astochasticpoint process, theprobability distribution of which is characterized as adeterminant of some function. They are suited for modelling global negative correlations, and for efficient algorithms of sampling, marginalization, conditioning, and other inference tasks. Such processes arise as important tools inrandom matrix theory,combinatorics,physics,[1]machine learning,[2] and wireless network modeling.[3][4][5]

Introduction

[edit]

Intuition

[edit]

Consider some positively charged particles confined in a 1-dimensional box[1,+1]{\displaystyle [-1,+1]}. Due to electrostatic repulsion, the locations of the charged particles are negatively correlated. That is, if one particle is in a small segment[x,x+δx]{\displaystyle [x,x+\delta x]}, then that makes the other particles less likely to be in the same set. The strength of repulsion between two particles at locationsx,x{\displaystyle x,x'} can be characterized by a functionK(x,x){\displaystyle K(x,x')}.

Formal definition

[edit]

LetΛ{\displaystyle \Lambda } be alocally compactPolish space andμ{\displaystyle \mu } be aRadon measure onΛ{\displaystyle \Lambda }. In most concrete applications, these areEuclidean spaceRn{\displaystyle \mathbb {R} ^{n}} with its Lebesgue measure. Akernel function is ameasurable functionK:Λ2C{\displaystyle K:\Lambda ^{2}\to \mathbb {C} }.

We say thatX{\displaystyle X} is adeterminantal point process onΛ{\displaystyle \Lambda } with kernelK{\displaystyle K} if it is a simplepoint process onΛ{\displaystyle \Lambda } with ajoint intensity orcorrelation function (which is the density of itsfactorial moment measure) given by

ρn(x1,,xn)=det[K(xi,xj)]1i,jn{\displaystyle \rho _{n}(x_{1},\ldots ,x_{n})=\det[K(x_{i},x_{j})]_{1\leq i,j\leq n}}

for everyn ≥ 1 andx1, ...,xn ∈ Λ.[6]

Properties

[edit]

Existence

[edit]

The following two conditions are necessary and sufficient for the existence of a determinantal random point process with intensities ρk.

Uniqueness

[edit]

A sufficient condition for the uniqueness of a determinantal random process with joint intensitiesρk isk=0(1k!Akρk(x1,,xk)dx1dxk)1k={\displaystyle \sum _{k=0}^{\infty }\left({\frac {1}{k!}}\int _{A^{k}}\rho _{k}(x_{1},\ldots ,x_{k})\,{\textrm {d}}x_{1}\cdots {\textrm {d}}x_{k}\right)^{-{\frac {1}{k}}}=\infty }for every bounded BorelA ⊆ Λ.[7]

Examples

[edit]

Gaussian unitary ensemble

[edit]
Main article:Gaussian unitary ensemble

The eigenvalues of a randomm × m Hermitian matrix drawn from theGaussian unitary ensemble (GUE) form a determinantal point process onR{\displaystyle \mathbb {R} } with kernel

Km(x,y)=k=0m1ψk(x)ψk(y){\displaystyle K_{m}(x,y)=\sum _{k=0}^{m-1}\psi _{k}(x)\psi _{k}(y)}

whereψk(x){\displaystyle \psi _{k}(x)} is thek{\displaystyle k}th oscillator wave function defined by

ψk(x)=12nn!Hk(x)ex2/4{\displaystyle \psi _{k}(x)={\frac {1}{\sqrt {{\sqrt {2n}}n!}}}H_{k}(x)e^{-x^{2}/4}}

andHk(x){\displaystyle H_{k}(x)} is thek{\displaystyle k}th Hermite polynomial.[8]

Airy process

[edit]
Main article:Airy process

TheAiry process is governed by the so calledextended Airy kernel which is a generalization of the Airy kernel functionKAi(x,y)=Ai(x)Ai(y)Ai(y)Ai(x)xy{\displaystyle K^{\mathrm {Ai} }(x,y)={\frac {\operatorname {Ai} (x)\operatorname {Ai} ^{\prime }(y)-\operatorname {Ai} (y)\operatorname {Ai} ^{\prime }(x)}{x-y}}}whereAi{\displaystyle \operatorname {Ai} } is theAiry function. This process arises from rescaled eigenvalues near the spectral edge of theGaussian Unitary Ensemble.[9]

Poissonized Plancherel measure

[edit]

The poissonized Plancherel measure oninteger partition (and therefore onYoung diagrams) plays an important role in the study of thelongest increasing subsequence of a random permutation. The point process corresponding to a random Young diagram, expressed in modified Frobenius coordinates, is a determinantal point process onZ{\displaystyle \mathbb {Z} } +12 with the discrete Bessel kernel, given by:

K(x,y)={θk+(|x|,|y|)|x||y|if xy>0,θk(|x|,|y|)xyif xy<0,{\displaystyle K(x,y)={\begin{cases}{\sqrt {\theta }}\,{\dfrac {k_{+}(|x|,|y|)}{|x|-|y|}}&{\text{if }}xy>0,\\[12pt]{\sqrt {\theta }}\,{\dfrac {k_{-}(|x|,|y|)}{x-y}}&{\text{if }}xy<0,\end{cases}}}wherek+(x,y)=Jx12(2θ)Jy+12(2θ)Jx+12(2θ)Jy12(2θ),{\displaystyle k_{+}(x,y)=J_{x-{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y+{\frac {1}{2}}}(2{\sqrt {\theta }})-J_{x+{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y-{\frac {1}{2}}}(2{\sqrt {\theta }}),}k(x,y)=Jx12(2θ)Jy12(2θ)+Jx+12(2θ)Jy+12(2θ){\displaystyle k_{-}(x,y)=J_{x-{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y-{\frac {1}{2}}}(2{\sqrt {\theta }})+J_{x+{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y+{\frac {1}{2}}}(2{\sqrt {\theta }})}ForJ theBessel function of the first kind, and θ the mean used in poissonization.[10]

This serves as an example of a well-defined determinantal point process with non-Hermitian kernel (although its restriction to the positive and negative semi-axis is Hermitian).[7]

Uniform spanning trees

[edit]

Let G be a finite, undirected, connectedgraph, with edge setE. DefineIe:E → 2(E) as follows: first choose some arbitrary set of orientations for the edges E, and for each resulting, oriented edgee, defineIe to be the projection of a unit flow alonge onto the subspace of2(E) spanned by star flows.[11] Then the uniformly randomspanning tree of G is a determinantal point process onE, with kernel

K(e,f)=Ie,If,e,fE{\displaystyle K(e,f)=\langle I^{e},I^{f}\rangle ,\quad e,f\in E}.[6]

References

[edit]
  1. ^Vershik, Anatoly M. (2003).Asymptotic combinatorics with applications to mathematical physics a European mathematical summer school held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001. Berlin [etc.]: Springer. p. 151.ISBN 978-3-540-44890-7.
  2. ^Kulesza, Alex; Taskar, Ben (2012). "Determinantal Point Processes for Machine Learning".Foundations and Trends in Machine Learning.5 (2–3):123–286.arXiv:1207.6083.doi:10.1561/2200000044.
  3. ^Miyoshi, Naoto; Shirai, Tomoyuki (2016)."A Cellular Network Model with Ginibre Configured Base Stations".Advances in Applied Probability.46 (3):832–845.doi:10.1239/aap/1409319562.ISSN 0001-8678.
  4. ^Torrisi, Giovanni Luca; Leonardi, Emilio (2014)."Large Deviations of the Interference in the Ginibre Network Model"(PDF).Stochastic Systems.4 (1):173–205.doi:10.1287/13-SSY109.ISSN 1946-5238.
  5. ^N. Deng, W. Zhou, and M. Haenggi. The Ginibre point process as a model for wireless networks with repulsion.IEEE Transactions on Wireless Communications, vol. 14, pp. 107-121, Jan. 2015.
  6. ^ab Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B., Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009.
  7. ^abcA. Soshnikov, Determinantal random point fields.Russian Math. Surveys, 2000, 55 (5), 923–975.
  8. ^B. Valko.Random matrices, lectures 14–15.Course lecture notes, University of Wisconsin-Madison.
  9. ^Tracy, Craig A.; Widom, Harold (January 1994)."Level-spacing distributions and the Airy kernel".Communications in Mathematical Physics.159 (1):151–174.arXiv:hep-th/9211141.doi:10.1007/BF02100489.ISSN 0010-3616.
  10. ^A. Borodin, A. Okounkov, and G. Olshanski, On asymptotics of Plancherel measures for symmetric groups, available viaarXiv:math/9905032.
  11. ^Lyons, R. with Peres, Y., Probability on Trees and Networks. Cambridge University Press, In preparation. Current version available athttp://mypage.iu.edu/~rdlyons/
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Concepts
Ensembles
Laws
Techniques
Retrieved from "https://en.wikipedia.org/w/index.php?title=Determinantal_point_process&oldid=1334474644"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp