Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Covariant formulation of classical electromagnetism

Thecovariant formulation ofclassical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular,Maxwell's equations and theLorentz force) in a form that is manifestly invariant underLorentz transformations, in the formalism ofspecial relativity using rectilinearinertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general asMaxwell's equations in curved spacetime or non-rectilinear coordinate systems.[a]

Covariant objects

edit

Preliminary four-vectors

edit
Main article:Lorentz covariance

Lorentz tensors of the following kinds may be used in this article to describe bodies or particles:

The signs in the following tensor analysis depend on theconvention used for themetric tensor. The convention used here is(+ − − −), corresponding to theMinkowski metric tensor:ημν=(1000010000100001){\displaystyle \eta ^{\mu \nu }={\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}}} 

Electromagnetic tensor

edit

The electromagnetic tensor is the combination of the electric and magnetic fields into a covariantantisymmetric tensor whose entries areB-field quantities.[1]Fαβ=(0Ex/cEy/cEz/cEx/c0BzByEy/cBz0BxEz/cByBx0){\displaystyle F_{\alpha \beta }={\begin{pmatrix}0&E_{x}/c&E_{y}/c&E_{z}/c\\-E_{x}/c&0&-B_{z}&B_{y}\\-E_{y}/c&B_{z}&0&-B_{x}\\-E_{z}/c&-B_{y}&B_{x}&0\end{pmatrix}}} and the result of raising its indices isFμν=defημαFαβηβν=(0Ex/cEy/cEz/cEx/c0BzByEy/cBz0BxEz/cByBx0),{\displaystyle F^{\mu \nu }\mathrel {\stackrel {\mathrm {def} }{=}} \eta ^{\mu \alpha }\,F_{\alpha \beta }\,\eta ^{\beta \nu }={\begin{pmatrix}0&-E_{x}/c&-E_{y}/c&-E_{z}/c\\E_{x}/c&0&-B_{z}&B_{y}\\E_{y}/c&B_{z}&0&-B_{x}\\E_{z}/c&-B_{y}&B_{x}&0\end{pmatrix}}\,,} whereE is theelectric field,B themagnetic field, andc thespeed of light.

Four-current

edit
Main article:Four-current

The four-current is the contravariant four-vector which combineselectric charge densityρ andelectric current densityj:Jα=(cρ,j).{\displaystyle J^{\alpha }=(c\rho ,\mathbf {j} )\,.} 

Four-potential

edit
Main article:Four-potential

The electromagnetic four-potential is a covariant four-vector containing theelectric potential (also called thescalar potential)ϕ andmagnetic vector potential (orvector potential)A, as follows:Aα=(ϕ/c,A).{\displaystyle A^{\alpha }=\left(\phi /c,\mathbf {A} \right)\,.} 

The differential of the electromagnetic potential isFαβ=αAββAα.{\displaystyle F_{\alpha \beta }=\partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha }\,.} 

In the language ofdifferential forms, which provides the generalisation to curved spacetimes, these are the components of a 1-formA=Aαdxα{\displaystyle A=A_{\alpha }dx^{\alpha }}  and a 2-formF=dA=12Fαβdxαdxβ{\textstyle F=dA={\frac {1}{2}}F_{\alpha \beta }dx^{\alpha }\wedge dx^{\beta }}  respectively. Here,d{\displaystyle d}  is theexterior derivative and{\displaystyle \wedge }  thewedge product.

Electromagnetic stress–energy tensor

edit

The electromagnetic stress–energy tensor can be interpreted as the flux density of the momentum four-vector, and is a contravariant symmetric tensor that is the contribution of the electromagnetic fields to the overallstress–energy tensor:Tαβ=(ε0E2/2+B2/2μ0Sx/cSy/cSz/cSx/cσxxσxyσxzSy/cσyxσyyσyzSz/cσzxσzyσzz),{\displaystyle T^{\alpha \beta }={\begin{pmatrix}\varepsilon _{0}E^{2}/2+B^{2}/2\mu _{0}&S_{x}/c&S_{y}/c&S_{z}/c\\S_{x}/c&-\sigma _{xx}&-\sigma _{xy}&-\sigma _{xz}\\S_{y}/c&-\sigma _{yx}&-\sigma _{yy}&-\sigma _{yz}\\S_{z}/c&-\sigma _{zx}&-\sigma _{zy}&-\sigma _{zz}\end{pmatrix}}\,,} whereε0{\displaystyle \varepsilon _{0}}  is theelectric permittivity of vacuum,μ0 is themagnetic permeability of vacuum, thePoynting vector isS=1μ0E×B{\displaystyle \mathbf {S} ={\frac {1}{\mu _{0}}}\mathbf {E} \times \mathbf {B} } and theMaxwell stress tensor is given byσij=ε0EiEj+1μ0BiBj(12ε0E2+12μ0B2)δij.{\displaystyle \sigma _{ij}=\varepsilon _{0}E_{i}E_{j}+{\frac {1}{\mu _{0}}}B_{i}B_{j}-\left({\frac {1}{2}}\varepsilon _{0}E^{2}+{\frac {1}{2\mu _{0}}}B^{2}\right)\delta _{ij}\,.} 

The electromagnetic field tensorF constructs the electromagnetic stress–energy tensorT by the equation:[2]Tαβ=1μ0(ηανFνγFβγ14ηαβFγνFγν){\displaystyle T^{\alpha \beta }={\frac {1}{\mu _{0}}}\left(\eta ^{\alpha \nu }F_{\nu \gamma }F^{\beta \gamma }-{\frac {1}{4}}\eta ^{\alpha \beta }F_{\gamma \nu }F^{\gamma \nu }\right)} whereη is theMinkowski metric tensor (with signature(+ − − −)). Notice that we use the fact thatε0μ0c2=1,{\displaystyle \varepsilon _{0}\mu _{0}c^{2}=1\,,} which is predicted by Maxwell's equations.

Another way to covariant expression for the eletromagnetic stress-energy tensor which may be simpler since it does not involve covariant and contravariant indices is this one:T=1μ0(FηF14trace(FηFη)){\displaystyle T=-{\frac {1}{\mu _{0}}}(F*\eta *F'-{\frac {1}{4}}trace(F*\eta *F'*\eta ))} Where F' is the trasposed electromagnetic tensor or equivalently -F and the asterisk denotes matrix multipliaction.

Maxwell's equations in vacuum

edit
Main article:Maxwell's equations

In vacuum (or for the microscopic equations, not including macroscopic material descriptions), Maxwell's equations can be written as two tensor equations.

The two inhomogeneous Maxwell's equations,Gauss's Law andAmpère's law (with Maxwell's correction) combine into (with(+ − − −) metric):[3]

The homogeneous equations –Faraday's law of induction andGauss's law for magnetism combine to formσFμν+μFνσ+νFσμ=0{\displaystyle \partial ^{\sigma }F^{\mu \nu }+\partial ^{\mu }F^{\nu \sigma }+\partial ^{\nu }F^{\sigma \mu }=0} , which may be written using Levi-Civita duality as:

whereFαβ is theelectromagnetic tensor,Jα is thefour-current,εαβγδ is theLevi-Civita symbol, and the indices behave according to theEinstein summation convention.

Each of these tensor equations corresponds to four scalar equations, one for each value ofβ.

Using theantisymmetric tensor notation and comma notation for the partial derivative (seeRicci calculus), the second equation can also be written more compactly as:F[αβ,γ]=0.{\displaystyle F_{[\alpha \beta ,\gamma ]}=0.} 

In the absence of sources, Maxwell's equations reduce to:ννFαβ=def2Fαβ=def1c22Fαβt22Fαβ=0,{\displaystyle \partial ^{\nu }\partial _{\nu }F^{\alpha \beta }\mathrel {\stackrel {\text{def}}{=}} \partial ^{2}F^{\alpha \beta }\mathrel {\stackrel {\text{def}}{=}} {1 \over c^{2}}{\partial ^{2}F^{\alpha \beta } \over {\partial t}^{2}}-\nabla ^{2}F^{\alpha \beta }=0\,,} which is anelectromagnetic wave equation in the field strength tensor.

Maxwell's equations in the Lorenz gauge

edit

TheLorenz gauge condition is a Lorentz-invariant gauge condition. (This can be contrasted with othergauge conditions such as theCoulomb gauge, which if it holds in oneinertial frame will generally not hold in any other.) It is expressed in terms of the four-potential as follows:αAα=αAα=0.{\displaystyle \partial _{\alpha }A^{\alpha }=\partial ^{\alpha }A_{\alpha }=0\,.} 

In the Lorenz gauge, the microscopic Maxwell's equations can be written as:2Aσ=μ0Jσ.{\displaystyle {\partial }^{2}A^{\sigma }=\mu _{0}\,J^{\sigma }\,.} 

Lorentz force

edit
Main article:Lorentz force

Charged particle

edit
 
Lorentz forcef on acharged particle (ofchargeq) in motion (instantaneous velocityv). TheE field andB field vary in space and time.

Electromagnetic (EM) fields affect the motion ofelectrically charged matter: due to theLorentz force. In this way, EM fields can bedetected (with applications inparticle physics, and natural occurrences such as inaurorae). In relativistic form, the Lorentz force uses the field strength tensor as follows.[4]

Expressed in terms ofcoordinate timet, it is:dpαdt=qFαβdxβdt,{\displaystyle {dp_{\alpha } \over {dt}}=q\,F_{\alpha \beta }\,{\frac {dx^{\beta }}{dt}},} wherepα is the four-momentum,q is thecharge, andxβ is the position.

Expressed in frame-independent form, we have the four-forcedpαdτ=qFαβuβ,{\displaystyle {\frac {dp_{\alpha }}{d\tau }}\,=q\,F_{\alpha \beta }\,u^{\beta },} whereuβ is the four-velocity, andτ is the particle'sproper time, which is related to coordinate time bydt =γdτ.

Charge continuum

edit
 
Lorentz force per spatial volumef on a continuouscharge distribution (charge density ρ) in motion.

The density of force due to electromagnetism, whose spatial part is the Lorentz force, is given byfα=FαβJβ.{\displaystyle f_{\alpha }=F_{\alpha \beta }J^{\beta }.} and is related to the electromagnetic stress–energy tensor byfα=Tαβ,βTαβxβ.{\displaystyle f^{\alpha }=-{T^{\alpha \beta }}_{,\beta }\equiv -{\frac {\partial T^{\alpha \beta }}{\partial x^{\beta }}}.} 

Conservation laws

edit

Electric charge

edit

Thecontinuity equation:Jβ,β=defβJβ=βαFαβ/μ0=0.{\displaystyle {J^{\beta }}_{,\beta }\mathrel {\overset {\text{def}}{\mathop {=} }} \partial _{\beta }J^{\beta }=\partial _{\beta }\partial _{\alpha }F^{\alpha \beta }/\mu _{0}=0.} expressescharge conservation.

Electromagnetic energy–momentum

edit

Using the Maxwell equations, one can see that theelectromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vectorTαβ,β+FαβJβ=0{\displaystyle {T^{\alpha \beta }}_{,\beta }+F^{\alpha \beta }J_{\beta }=0} orηανTνβ,β+FαβJβ=0,{\displaystyle \eta _{\alpha \nu }{T^{\nu \beta }}_{,\beta }+F_{\alpha \beta }J^{\beta }=0,} which expresses the conservation of linear momentum and energy by electromagnetic interactions.

Covariant objects in matter

edit

Free and bound four-currents

edit

In order to solve the equations of electromagnetism given here, it is necessary to add information about how to calculate the electric current,Jν. Frequently, it is convenient to separate the current into two parts, the free current and the bound current, which are modeled by different equations;Jν=Jνfree+Jνbound,{\displaystyle J^{\nu }={J^{\nu }}_{\text{free}}+{J^{\nu }}_{\text{bound}}\,,} whereJνfree=(cρfree,Jfree)=(cD,Dt+×H),Jνbound=(cρbound,Jbound)=(cP,Pt+×M).{\displaystyle {\begin{aligned}{J^{\nu }}_{\text{free}}={\begin{pmatrix}c\rho _{\text{free}},&\mathbf {J} _{\text{free}}\end{pmatrix}}&={\begin{pmatrix}c\nabla \cdot \mathbf {D} ,&-{\frac {\partial \mathbf {D} }{\partial t}}+\nabla \times \mathbf {H} \end{pmatrix}}\,,\\{J^{\nu }}_{\text{bound}}={\begin{pmatrix}c\rho _{\text{bound}},&\mathbf {J} _{\text{bound}}\end{pmatrix}}&={\begin{pmatrix}-c\nabla \cdot \mathbf {P} ,&{\frac {\partial \mathbf {P} }{\partial t}}+\nabla \times \mathbf {M} \end{pmatrix}}\,.\end{aligned}}} 

Maxwell's macroscopic equations have been used, in addition the definitions of theelectric displacementD and themagnetic intensityH:D=ε0E+P,H=1μ0BM.{\displaystyle {\begin{aligned}\mathbf {D} &=\varepsilon _{0}\mathbf {E} +\mathbf {P} ,\\\mathbf {H} &={\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} \,.\end{aligned}}} whereM is themagnetization andP theelectric polarization.

Magnetization–polarization tensor

edit

The bound current is derived from theP andM fields which form an antisymmetric contravariant magnetization-polarization tensor[1][5][6][7]Mμν=(0PxcPycPzcPxc0MzMyPycMz0MxPzcMyMx0),{\displaystyle {\mathcal {M}}^{\mu \nu }={\begin{pmatrix}0&P_{x}c&P_{y}c&P_{z}c\\-P_{x}c&0&-M_{z}&M_{y}\\-P_{y}c&M_{z}&0&-M_{x}\\-P_{z}c&-M_{y}&M_{x}&0\end{pmatrix}},} which determines the bound currentJνbound=μMμν.{\displaystyle {J^{\nu }}_{\text{bound}}=\partial _{\mu }{\mathcal {M}}^{\mu \nu }\,.} 

Electric displacement tensor

edit

If this is combined withFμν we get the antisymmetric contravariant electromagnetic displacement tensor which combines theD andH fields as follows:Dμν=(0DxcDycDzcDxc0HzHyDycHz0HxDzcHyHx0).{\displaystyle {\mathcal {D}}^{\mu \nu }={\begin{pmatrix}0&-D_{x}c&-D_{y}c&-D_{z}c\\D_{x}c&0&-H_{z}&H_{y}\\D_{y}c&H_{z}&0&-H_{x}\\D_{z}c&-H_{y}&H_{x}&0\end{pmatrix}}.} 

The three field tensors are related by:Dμν=1μ0FμνMμν{\displaystyle {\mathcal {D}}^{\mu \nu }={\frac {1}{\mu _{0}}}F^{\mu \nu }-{\mathcal {M}}^{\mu \nu }} which is equivalent to the definitions of theD andH fields given above.

Maxwell's equations in matter

edit

The result is thatAmpère's law,×HDt=Jfree,{\displaystyle \mathbf {\nabla } \times \mathbf {H} -{\frac {\partial \mathbf {D} }{\partial t}}=\mathbf {J} _{\text{free}},} andGauss's law,D=ρfree,{\displaystyle \mathbf {\nabla } \cdot \mathbf {D} =\rho _{\text{free}},} combine into one equation:

The bound current and free current as defined above are automatically and separately conservedνJνbound=0νJνfree=0.{\displaystyle {\begin{aligned}\partial _{\nu }{J^{\nu }}_{\text{bound}}&=0\,\\\partial _{\nu }{J^{\nu }}_{\text{free}}&=0\,.\end{aligned}}} 

Constitutive equations

edit

Vacuum

edit

In vacuum, the constitutive relations between the field tensor and displacement tensor are:μ0Dμν=ημαFαβηβν.{\displaystyle \mu _{0}{\mathcal {D}}^{\mu \nu }=\eta ^{\mu \alpha }F_{\alpha \beta }\eta ^{\beta \nu }\,.} 

Antisymmetry reduces these 16 equations to just six independent equations. Because it is usual to defineFμν byFμν=ημαFαβηβν,{\displaystyle F^{\mu \nu }=\eta ^{\mu \alpha }F_{\alpha \beta }\eta ^{\beta \nu },} the constitutive equations may, invacuum, be combined with the Gauss–Ampère law to get:βFαβ=μ0Jα.{\displaystyle \partial _{\beta }F^{\alpha \beta }=\mu _{0}J^{\alpha }.} 

The electromagnetic stress–energy tensor in terms of the displacement is:Tαπ=FαβDπβ14δαπFμνDμν,{\displaystyle T_{\alpha }{}^{\pi }=F_{\alpha \beta }{\mathcal {D}}^{\pi \beta }-{\frac {1}{4}}\delta _{\alpha }^{\pi }F_{\mu \nu }{\mathcal {D}}^{\mu \nu },} whereδαπ is theKronecker delta. When the upper index is lowered withη, it becomes symmetric and is part of the source of the gravitational field.

Linear, nondispersive matter

edit

Thus we have reduced the problem of modeling the current,Jν to two (hopefully) easier problems — modeling the free current,Jνfree and modeling the magnetization and polarization,Mμν{\displaystyle {\mathcal {M}}^{\mu \nu }} . For example, in the simplest materials at low frequencies, one hasJfree=σEP=ε0χeEM=χmH{\displaystyle {\begin{aligned}\mathbf {J} _{\text{free}}&=\sigma \mathbf {E} \,\\\mathbf {P} &=\varepsilon _{0}\chi _{e}\mathbf {E} \,\\\mathbf {M} &=\chi _{m}\mathbf {H} \,\end{aligned}}} where one is in the instantaneously comoving inertial frame of the material,σ is itselectrical conductivity,χe is itselectric susceptibility, andχm is itsmagnetic susceptibility.

The constitutive relations between theD{\displaystyle {\mathcal {D}}}  andF tensors, proposed byMinkowski for a linear materials (that is,E isproportional toD andB proportional toH), are:Dμνuν=c2εFμνuνDμνuν=1μFμνuν{\displaystyle {\begin{aligned}{\mathcal {D}}^{\mu \nu }u_{\nu }&=c^{2}\varepsilon F^{\mu \nu }u_{\nu }\\{\star {\mathcal {D}}^{\mu \nu }}u_{\nu }&={\frac {1}{\mu }}{\star F^{\mu \nu }}u_{\nu }\end{aligned}}} whereu is the four-velocity of material,ε andμ are respectively the properpermittivity andpermeability of the material (i.e. in rest frame of material),{\displaystyle \star }  and denotes theHodge star operator.

Lagrangian for classical electrodynamics

edit

Vacuum

edit

TheLagrangian density for classical electrodynamics is composed by two components: a field component and a source component:L=Lfield+Lint=14μ0FαβFαβAαJα.{\displaystyle {\mathcal {L}}\,=\,{\mathcal {L}}_{\text{field}}+{\mathcal {L}}_{\text{int}}=-{\frac {1}{4\mu _{0}}}F^{\alpha \beta }F_{\alpha \beta }-A_{\alpha }J^{\alpha }\,.} 

In the interaction term, the four-current should be understood as an abbreviation of many terms expressing the electric currents of other charged fields in terms of their variables; the four-current is not itself a fundamental field.

TheLagrange equations for the electromagnetic lagrangian densityL(Aα,βAα){\displaystyle {\mathcal {L}}{\mathord {\left(A_{\alpha },\partial _{\beta }A_{\alpha }\right)}}}  can be stated as follows:β[L(βAα)]LAα=0.{\displaystyle \partial _{\beta }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\beta }A_{\alpha })}}\right]-{\frac {\partial {\mathcal {L}}}{\partial A_{\alpha }}}=0\,.} 

NotingFλσ=Fμνημληνσ,Fμν=μAννAμ(μAν)(ρAσ)=δμρδνσ{\displaystyle {\begin{aligned}F^{\lambda \sigma }&=F_{\mu \nu }\eta ^{\mu \lambda }\eta ^{\nu \sigma },\\F_{\mu \nu }&=\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }\,\\{\partial \left(\partial _{\mu }A_{\nu }\right) \over \partial \left(\partial _{\rho }A_{\sigma }\right)}&=\delta _{\mu }^{\rho }\delta _{\nu }^{\sigma }\end{aligned}}} the expression inside the square bracket isL(βAα)= 14μ0 (FμνημληνσFλσ)(βAα)= 14μ0 ημληνσ(Fλσ(δμβδναδνβδμα)+Fμν(δλβδσαδσβδλα))= Fβαμ0.{\displaystyle {\begin{aligned}{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\beta }A_{\alpha })}}&=-\ {\frac {1}{4\mu _{0}}}\ {\frac {\partial \left(F_{\mu \nu }\eta ^{\mu \lambda }\eta ^{\nu \sigma }F_{\lambda \sigma }\right)}{\partial \left(\partial _{\beta }A_{\alpha }\right)}}\\&=-\ {\frac {1}{4\mu _{0}}}\ \eta ^{\mu \lambda }\eta ^{\nu \sigma }\left(F_{\lambda \sigma }\left(\delta _{\mu }^{\beta }\delta _{\nu }^{\alpha }-\delta _{\nu }^{\beta }\delta _{\mu }^{\alpha }\right)+F_{\mu \nu }\left(\delta _{\lambda }^{\beta }\delta _{\sigma }^{\alpha }-\delta _{\sigma }^{\beta }\delta _{\lambda }^{\alpha }\right)\right)\\&=-\ {\frac {F^{\beta \alpha }}{\mu _{0}}}\,.\end{aligned}}} 

The second term isLAα=Jα.{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial A_{\alpha }}}=-J^{\alpha }\,.} 

Therefore, the electromagnetic field's equations of motion areFβαxβ=μ0Jα.{\displaystyle {\frac {\partial F^{\beta \alpha }}{\partial x^{\beta }}}=\mu _{0}J^{\alpha }\,.} which is the Gauss–Ampère equation above.

Matter

edit

Separating the free currents from the bound currents, another way to write the Lagrangian density is as follows:L=14μ0FαβFαβAαJfreeα+12FαβMαβ.{\displaystyle {\mathcal {L}}\,=\,-{\frac {1}{4\mu _{0}}}F^{\alpha \beta }F_{\alpha \beta }-A_{\alpha }J_{\text{free}}^{\alpha }+{\frac {1}{2}}F_{\alpha \beta }{\mathcal {M}}^{\alpha \beta }\,.} 

Using Lagrange equation, the equations of motion forDμν{\displaystyle {\mathcal {D}}^{\mu \nu }}  can be derived.

The equivalent expression in vector notation is:L=12(ε0E21μ0B2)ϕρfree+AJfree+EP+BM.{\displaystyle {\mathcal {L}}\,=\,{\frac {1}{2}}\left(\varepsilon _{0}E^{2}-{\frac {1}{\mu _{0}}}B^{2}\right)-\phi \,\rho _{\text{free}}+\mathbf {A} \cdot \mathbf {J} _{\text{free}}+\mathbf {E} \cdot \mathbf {P} +\mathbf {B} \cdot \mathbf {M} \,.} 

See also

edit

Notes

edit
  1. ^This article uses theclassical treatment of tensors andEinstein summation convention throughout and theMinkowski metric has the formdiag(+1, −1, −1, −1). Where the equations are specified as holding in vacuum, one could instead regard them as the formulation of Maxwell's equations in terms oftotal charge and current.

References

edit
  1. ^abVanderlinde, Jack (2004),classical electromagnetic theory, Springer, pp. 313–328,ISBN 9781402026997
  2. ^Classical Electrodynamics, Jackson, 3rd edition, page 609
  3. ^Classical Electrodynamics by Jackson, 3rd Edition, Chapter 11 Special Theory of Relativity
  4. ^The assumption is made that no forces other than those originating inE andB are present, that is, nogravitational,weak orstrong forces.
  5. ^However, the assumption thatMμν{\displaystyle M^{\mu \nu }} ,Dμν{\displaystyle D^{\mu \nu }} , and evenFμν{\displaystyle F^{\mu \nu }} , are relativistic tensors in a polarizable medium, is without foundation. The quantityAα=(ϕ/c,A){\displaystyle A^{\alpha }=\left(\phi /c,\mathbf {A} \right)\,} is not a four vector in a polarizable medium, soFαβ=αAββAα{\displaystyle F_{\alpha \beta }=\partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha }\,}  does not produce a tensor.
  6. ^Franklin, Jerrold,Can electromagnetic fields form tensors in a polarizable medium?
  7. ^Gonano, Carlo,Definition for Polarization P and Magnetization M Fully Consistent with Maxwell's Equations

Further reading

edit

[8]ページ先頭

©2009-2025 Movatter.jp