Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Convex series

This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(May 2020) (Learn how and when to remove this message)

In mathematics, particularly infunctional analysis andconvex analysis, aconvex series is aseries of the formi=1rixi{\displaystyle \sum _{i=1}^{\infty }r_{i}x_{i}} wherex1,x2,{\displaystyle x_{1},x_{2},\ldots } are all elements of atopological vector spaceX{\displaystyle X}, and allr1,r2,{\displaystyle r_{1},r_{2},\ldots } are non-negativereal numbers that sum to1{\displaystyle 1} (that is, such thati=1ri=1{\displaystyle \sum _{i=1}^{\infty }r_{i}=1}).

Types of Convex series

edit

Suppose thatS{\displaystyle S}  is a subset ofX{\displaystyle X}  andi=1rixi{\displaystyle \sum _{i=1}^{\infty }r_{i}x_{i}}  is a convex series inX.{\displaystyle X.} 

Types of subsets

edit

Convex series allow for the definition of special types of subsets that are well-behaved and useful with very good stability properties.

IfS{\displaystyle S}  is a subset of atopological vector spaceX{\displaystyle X}  thenS{\displaystyle S}  is said to be a:

Theempty set is convex, ideally convex, bcs-complete, cs-complete, and cs-closed.

Conditions (Hx) and (Hwx)

edit

IfX{\displaystyle X}  andY{\displaystyle Y}  are topological vector spaces,A{\displaystyle A}  is a subset ofX×Y,{\displaystyle X\times Y,}  andxX{\displaystyle x\in X}  thenA{\displaystyle A}  is said to satisfy:[1]

Multifunctions

edit

The following notation and notions are used, whereR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y}  andS:YZ{\displaystyle {\mathcal {S}}:Y\rightrightarrows Z}  aremultifunctions andSX{\displaystyle S\subseteq X}  is a non-empty subset of atopological vector spaceX:{\displaystyle X:} 

Relationships

edit

LetX,Y, and Z{\displaystyle X,Y,{\text{ and }}Z}  be topological vector spaces,SX,TY,{\displaystyle S\subseteq X,T\subseteq Y,}  andAX×Y.{\displaystyle A\subseteq X\times Y.}  The following implications hold:

complete{\displaystyle \implies }  cs-complete{\displaystyle \implies }  cs-closed{\displaystyle \implies }  lower cs-closed (lcs-closed)and ideally convex.
lower cs-closed (lcs-closed)or ideally convex{\displaystyle \implies }  lower ideally convex (li-convex){\displaystyle \implies }  convex.
(Hx){\displaystyle \implies }  (Hwx){\displaystyle \implies }  convex.

The converse implications do not hold in general.

IfX{\displaystyle X}  is complete then,

  1. S{\displaystyle S}  is cs-complete (respectively, bcs-complete) if and only ifS{\displaystyle S}  is cs-closed (respectively, ideally convex).
  2. A{\displaystyle A}  satisfies (Hx) if and only ifA{\displaystyle A}  is cs-closed.
  3. A{\displaystyle A}  satisfies (Hwx) if and only ifA{\displaystyle A}  is ideally convex.

IfY{\displaystyle Y}  is complete then,

  1. A{\displaystyle A}  satisfies (Hx) if and only ifA{\displaystyle A}  is cs-complete.
  2. A{\displaystyle A}  satisfies (Hwx) if and only ifA{\displaystyle A}  is bcs-complete.
  3. IfBX×Y×Z{\displaystyle B\subseteq X\times Y\times Z}  andyY{\displaystyle y\in Y}  then:
    1. B{\displaystyle B}  satisfies (H(x, y)) if and only ifB{\displaystyle B}  satisfies (Hx).
    2. B{\displaystyle B}  satisfies (Hw(x, y)) if and only ifB{\displaystyle B}  satisfies (Hwx).

IfX{\displaystyle X}  is locally convex andPrX(A){\displaystyle \operatorname {Pr} _{X}(A)}  is bounded then,

  1. IfA{\displaystyle A}  satisfies (Hx) thenPrX(A){\displaystyle \operatorname {Pr} _{X}(A)}  is cs-closed.
  2. IfA{\displaystyle A}  satisfies (Hwx) thenPrX(A){\displaystyle \operatorname {Pr} _{X}(A)}  is ideally convex.

Preserved properties

edit

LetX0{\displaystyle X_{0}}  be a linear subspace ofX.{\displaystyle X.}  LetR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y}  andS:YZ{\displaystyle {\mathcal {S}}:Y\rightrightarrows Z}  bemultifunctions.

Properties

edit

IfS{\displaystyle S}  be a non-empty convex subset of a topological vector spaceX{\displaystyle X}  then,

  1. IfS{\displaystyle S}  is closed or open thenS{\displaystyle S}  is cs-closed.
  2. IfX{\displaystyle X}  isHausdorff and finite dimensional thenS{\displaystyle S}  is cs-closed.
  3. IfX{\displaystyle X}  isfirst countable andS{\displaystyle S}  is ideally convex thenintS=int(clS).{\displaystyle \operatorname {int} S=\operatorname {int} \left(\operatorname {cl} S\right).} 

LetX{\displaystyle X}  be aFréchet space,Y{\displaystyle Y}  be a topological vector spaces,AX×Y,{\displaystyle A\subseteq X\times Y,}  andPrY:X×YY{\displaystyle \operatorname {Pr} _{Y}:X\times Y\to Y}  be the canonical projection. IfA{\displaystyle A}  is lower ideally convex (resp. lower cs-closed) then the same is true ofPrY(A).{\displaystyle \operatorname {Pr} _{Y}(A).} 

IfX{\displaystyle X}  is a barreledfirst countable space and ifCX{\displaystyle C\subseteq X}  then:

  1. IfC{\displaystyle C}  is lower ideally convex thenCi=intC,{\displaystyle C^{i}=\operatorname {int} C,}  whereCi:=aintXC{\displaystyle C^{i}:=\operatorname {aint} _{X}C}  denotes thealgebraic interior ofC{\displaystyle C}  inX.{\displaystyle X.} 
  2. IfC{\displaystyle C}  is ideally convex thenCi=intC=int(clC)=(clC)i.{\displaystyle C^{i}=\operatorname {int} C=\operatorname {int} \left(\operatorname {cl} C\right)=\left(\operatorname {cl} C\right)^{i}.} 

See also

edit
  • Ursescu theorem – Generalization of closed graph, open mapping, and uniform boundedness theorem

Notes

edit
  1. ^Zălinescu 2002, pp. 1–23.

References

edit

[8]ページ先頭

©2009-2025 Movatter.jp