Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Continuous functional calculus

From Wikipedia, the free encyclopedia

Inmathematics, particularly inoperator theory andC*-algebra theory, thecontinuous functional calculus is afunctional calculus which allows the application of acontinuous function tonormal elements of a C*-algebra.

In advanced theory, the applications of this functional calculus are so natural that they are often not even mentioned. It is no overstatement to say that the continuous functional calculus makesthe difference between C*-algebras and generalBanach algebras, in which only aholomorphic functional calculus exists.

Motivation

[edit]

If one wants to extend thenatural functional calculus for polynomials on thespectrumσ(a){\displaystyle \sigma (a)} of an elementa{\displaystyle a} of a Banach algebraA{\displaystyle {\mathcal {A}}} to a functional calculus for continuous functionsC(σ(a)){\displaystyle C(\sigma (a))} on the spectrum, it seems obvious toapproximate a continuous function bypolynomials according to theStone-Weierstrass theorem, to insert the element into these polynomials and to show that thissequence of elementsconverges toA{\displaystyle {\mathcal {A}}}.The continuous functions onσ(a)C{\displaystyle \sigma (a)\subset \mathbb {C} } are approximated by polynomials inz{\displaystyle z} andz¯{\displaystyle {\overline {z}}}, i.e. by polynomials of the formp(z,z¯)=k,l=0Nck,lzkz¯l(ck,lC){\textstyle p(z,{\overline {z}})=\sum _{k,l=0}^{N}c_{k,l}z^{k}{\overline {z}}^{l}\;\left(c_{k,l}\in \mathbb {C} \right)}. Here,z¯{\displaystyle {\overline {z}}} denotes thecomplex conjugation, which is aninvolution on thecomplex numbers.[1]To be able to inserta{\displaystyle a} in place ofz{\displaystyle z} in this kind of polynomial,Banach *-algebras are considered, i.e. Banach algebras that also have an involution *, anda{\displaystyle a^{*}} is inserted in place ofz¯{\displaystyle {\overline {z}}}. In order to obtain ahomomorphismC[z,z¯]A{\displaystyle {\mathbb {C} }[z,{\overline {z}}]\rightarrow {\mathcal {A}}}, a restriction to normal elements, i.e. elements withaa=aa{\displaystyle a^{*}a=aa^{*}}, is necessary, as the polynomial ringC[z,z¯]{\displaystyle \mathbb {C} [z,{\overline {z}}]} iscommutative.If(pn(z,z¯))n{\displaystyle (p_{n}(z,{\overline {z}}))_{n}} is a sequence of polynomials that convergesuniformly onσ(a){\displaystyle \sigma (a)} to a continuous functionf{\displaystyle f}, the convergence of the sequence(pn(a,a))n{\displaystyle (p_{n}(a,a^{*}))_{n}} inA{\displaystyle {\mathcal {A}}} to an elementf(a){\displaystyle f(a)} must be ensured. A detailed analysis of this convergence problem shows that it is necessary to resort to C*-algebras. These considerations lead to the so-called continuous functional calculus.

Theorem

[edit]

continuous functional calculusLeta{\displaystyle a} be a normal element of the C*-algebraA{\displaystyle {\mathcal {A}}} withunit elemente{\displaystyle e} and letC(σ(a)){\displaystyle C(\sigma (a))} be the commutative C*-algebra of continuous functions onσ(a){\displaystyle \sigma (a)}, the spectrum ofa{\displaystyle a}. Then there exists exactly one*-homomorphismΦa:C(σ(a))A{\displaystyle \Phi _{a}\colon C(\sigma (a))\rightarrow {\mathcal {A}}} withΦa(1)=e{\displaystyle \Phi _{a}({\boldsymbol {1}})=e} for1(z)=1{\displaystyle {\boldsymbol {1}}(z)=1} andΦa(Idσ(a))=a{\displaystyle \Phi _{a}(\operatorname {Id} _{\sigma (a)})=a} for theidentity.[2]

The mappingΦa{\displaystyle \Phi _{a}} is called the continuous functional calculus of the normal elementa{\displaystyle a}.Usually it is suggestively setf(a):=Φa(f){\displaystyle f(a):=\Phi _{a}(f)}.[3]

Due to the *-homomorphism property, the following calculation rules apply to all functionsf,gC(σ(a)){\displaystyle f,g\in C(\sigma (a))} andscalarsλ,μC{\displaystyle \lambda ,\mu \in \mathbb {C} }:[4]

(linear)
(multiplicative)
(involutive)

One can therefore imagine actually inserting the normal elements into continuous functions; the obvious algebraic operations behave as expected.

The requirement for a unit element is not a significant restriction. If necessary, aunit element can be adjoined, yielding the enlarged C*-algebraA1{\displaystyle {\mathcal {A}}_{1}}. Then ifaA{\displaystyle a\in {\mathcal {A}}} andfC(σ(a)){\displaystyle f\in C(\sigma (a))} withf(0)=0{\displaystyle f(0)=0}, it follows that0σ(a){\displaystyle 0\in \sigma (a)} andf(a)AA1{\displaystyle f(a)\in {\mathcal {A}}\subset {\mathcal {A}}_{1}}.[5]

The existence and uniqueness of the continuous functional calculus are proven separately:

Infunctional analysis, the continuous functional calculus for a normal operatorT{\displaystyle T} is often of interest, i.e. the case whereA{\displaystyle {\mathcal {A}}} is the C*-algebraB(H){\displaystyle {\mathcal {B}}(H)} ofbounded operators on aHilbert spaceH{\displaystyle H}. In the literature, the continuous functional calculus is often only proved forself-adjoint operators in this setting. In this case, the proof does not need the Gelfandrepresentation.[8]

Further properties of the continuous functional calculus

[edit]

The continuous functional calculusΦa{\displaystyle \Phi _{a}} is anisometricisomorphism into the C*-subalgebraC(a,e){\displaystyle C^{*}(a,e)} generated bya{\displaystyle a} ande{\displaystyle e}, that is:[7]

Sincea{\displaystyle a} is a normal element ofA{\displaystyle {\mathcal {A}}}, the C*-subalgebra generated bya{\displaystyle a} ande{\displaystyle e} is commutative. In particular,f(a){\displaystyle f(a)} is normal and all elements of a functional calculuscommutate.[9]

Theholomorphic functional calculus isextended by the continuous functional calculus in an unambiguousway.[10] Therefore, for polynomialsp(z,z¯){\displaystyle p(z,{\overline {z}})} the continuous functional calculus corresponds to the natural functional calculus for polynomials:Φa(p(z,z¯))=p(a,a)=k,l=0Nck,lak(a)l{\textstyle \Phi _{a}(p(z,{\overline {z}}))=p(a,a^{*})=\sum _{k,l=0}^{N}c_{k,l}a^{k}(a^{*})^{l}} for allp(z,z¯)=k,l=0Nck,lzkz¯l{\textstyle p(z,{\overline {z}})=\sum _{k,l=0}^{N}c_{k,l}z^{k}{\overline {z}}^{l}} withck,lC{\displaystyle c_{k,l}\in \mathbb {C} }.[3]

For a sequence of functionsfnC(σ(a)){\displaystyle f_{n}\in C(\sigma (a))} that converges uniformly onσ(a){\displaystyle \sigma (a)} to a functionfC(σ(a)){\displaystyle f\in C(\sigma (a))},fn(a){\displaystyle f_{n}(a)} converges tof(a){\displaystyle f(a)}.[11] For apower seriesf(z)=n=0cnzn{\textstyle f(z)=\sum _{n=0}^{\infty }c_{n}z^{n}}, which convergesabsolutelyuniformly onσ(a){\displaystyle \sigma (a)}, thereforef(a)=n=0cnan{\textstyle f(a)=\sum _{n=0}^{\infty }c_{n}a^{n}}holds.[12]

IffC(σ(a)){\displaystyle f\in {\mathcal {C}}(\sigma (a))} andgC(σ(f(a))){\displaystyle g\in {\mathcal {C}}(\sigma (f(a)))}, then(gf)(a)=g(f(a)){\displaystyle (g\circ f)(a)=g(f(a))} holds for theircomposition.[5] Ifa,bAN{\displaystyle a,b\in {\mathcal {A}}_{N}} are two normal elements withf(a)=f(b){\displaystyle f(a)=f(b)} andg{\displaystyle g} is theinverse function off{\displaystyle f} on bothσ(a){\displaystyle \sigma (a)} andσ(b){\displaystyle \sigma (b)}, thena=b{\displaystyle a=b}, sincea=(fg)(a)=f(g(a))=f(g(b))=(fg)(b)=b{\displaystyle a=(f\circ g)(a)=f(g(a))=f(g(b))=(f\circ g)(b)=b}.[13]

Thespectral mapping theorem applies:σ(f(a))=f(σ(a)){\displaystyle \sigma (f(a))=f(\sigma (a))} for allfC(σ(a)){\displaystyle f\in C(\sigma (a))}.[7]

Ifab=ba{\displaystyle ab=ba} holds forbA{\displaystyle b\in {\mathcal {A}}}, thenf(a)b=bf(a){\displaystyle f(a)b=bf(a)} also holds for allfC(σ(a)){\displaystyle f\in C(\sigma (a))}, i.e. ifb{\displaystyle b} commutates witha{\displaystyle a}, then also with the corresponding elements of the continuous functional calculusf(a){\displaystyle f(a)}.[14]

LetΨ:AB{\displaystyle \Psi \colon {\mathcal {A}}\rightarrow {\mathcal {B}}} be an unital *-homomorphism between C*-algebrasA{\displaystyle {\mathcal {A}}} andB{\displaystyle {\mathcal {B}}}. ThenΨ{\displaystyle \Psi } commutates with the continuous functional calculus. The following holds:Ψ(f(a))=f(Ψ(a)){\displaystyle \Psi (f(a))=f(\Psi (a))} for allfC(σ(a)){\displaystyle f\in C(\sigma (a))}. In particular, the continuous functional calculus commutates with the Gelfandrepresentation.[4]

With the spectral mapping theorem, functions with certain properties can be directly related to certain properties of elements of C*-algebras:[15]

These are based on statements about the spectrum of certain elements, which are shown in the Applications section.

In the special case thatA{\displaystyle {\mathcal {A}}} is the C*-algebra of bounded operatorsB(H){\displaystyle {\mathcal {B}}(H)} for a Hilbert spaceH{\displaystyle H},eigenvectorsvH{\displaystyle v\in H} for the eigenvalueλσ(T){\displaystyle \lambda \in \sigma (T)} of a normal operatorTB(H){\displaystyle T\in {\mathcal {B}}(H)} are also eigenvectors for the eigenvaluef(λ)σ(f(T)){\displaystyle f(\lambda )\in \sigma (f(T))} of the operatorf(T){\displaystyle f(T)}. IfTv=λv{\displaystyle Tv=\lambda v}, thenf(T)v=f(λ)v{\displaystyle f(T)v=f(\lambda )v} also holds for allfσ(T){\displaystyle f\in \sigma (T)}.[18]

Applications

[edit]

The following applications are typical and very simple examples of the numerous applications of the continuous functional calculus:

Spectrum

[edit]

LetA{\displaystyle {\mathcal {A}}} be a C*-algebra andaAN{\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Then the following applies to the spectrumσ(a){\displaystyle \sigma (a)}:[15]

Proof.[3] The continuous functional calculusΦa{\displaystyle \Phi _{a}} for the normal elementaA{\displaystyle a\in {\mathcal {A}}} is a *-homomorphism withΦa(Id)=a{\displaystyle \Phi _{a}(\operatorname {Id} )=a} and thusa{\displaystyle a} is self-adjoint/unitary/a projection ifIdC(σ(a)){\displaystyle \operatorname {Id} \in C(\sigma (a))} is also self-adjoint/unitary/a projection. Exactly thenId{\displaystyle \operatorname {Id} } is self-adjoint ifz=Id(z)=Id¯(z)=z¯{\displaystyle z={\text{Id}}(z)={\overline {\text{Id}}}(z)={\overline {z}}} holds for allzσ(a){\displaystyle z\in \sigma (a)}, i.e. ifσ(a){\displaystyle \sigma (a)} is real. Exactly thenId{\displaystyle {\text{Id}}} is unitary if1=Id(z)Id¯(z)=zz¯=|z|2{\displaystyle 1={\text{Id}}(z){\overline {\operatorname {Id} }}(z)=z{\overline {z}}=|z|^{2}} holds for allzσ(a){\displaystyle z\in \sigma (a)}, thereforeσ(a){λC | λ=1}{\displaystyle \sigma (a)\subseteq \{\lambda \in \mathbb {C} \ |\ \left\|\lambda \right\|=1\}}. Exactly thenId{\displaystyle {\text{Id}}} is a projection if and only if(Id(z))2=Id(z)=Id(z)¯{\displaystyle (\operatorname {Id} (z))^{2}=\operatorname {Id} }(z)={\overline {\operatorname {Id} (z)}}, that isz2=z=z¯{\displaystyle z^{2}=z={\overline {z}}} for allzσ(a){\displaystyle z\in \sigma (a)}, i.e.σ(a){0,1}{\displaystyle \sigma (a)\subseteq \{0,1\}}

Roots

[edit]

Leta{\displaystyle a} be a positive element of a C*-algebraA{\displaystyle {\mathcal {A}}}. Then for everynN{\displaystyle n\in \mathbb {N} } there exists a uniquely determined positive elementbA+{\displaystyle b\in {\mathcal {A}}_{+}} withbn=a{\displaystyle b^{n}=a}, i.e. a uniquen{\displaystyle n}-throot.[19]

Proof. For eachnN{\displaystyle n\in \mathbb {N} }, the root functionfn:R0+R0+,xxn{\displaystyle f_{n}\colon \mathbb {R} _{0}^{+}\to \mathbb {R} _{0}^{+},x\mapsto {\sqrt[{n}]{x}}} is a continuous function onσ(a)R0+{\displaystyle \sigma (a)\subseteq \mathbb {R} _{0}^{+}}. Ifb:=fn(a){\displaystyle b\;\colon =f_{n}(a)} is defined using the continuous functional calculus, thenbn=(fn(a))n=(fnn)(a)=Idσ(a)(a)=a{\displaystyle b^{n}=(f_{n}(a))^{n}=(f_{n}^{n})(a)=\operatorname {Id} _{\sigma (a)}(a)=a} follows from the properties of the calculus. From the spectral mapping theorem followsσ(b)=σ(fn(a))=fn(σ(a))[0,){\displaystyle \sigma (b)=\sigma (f_{n}(a))=f_{n}(\sigma (a))\subseteq [0,\infty )}, i.e.b{\displaystyle b} ispositive.[19] IfcA+{\displaystyle c\in {\mathcal {A}}_{+}} is another positive element withcn=a=bn{\displaystyle c^{n}=a=b^{n}}, thenc=fn(cn)=fn(bn)=b{\displaystyle c=f_{n}(c^{n})=f_{n}(b^{n})=b} holds, as the root function on the positive real numbers is an inverse function to the functionzzn{\displaystyle z\mapsto z^{n}}.[13]

IfaAsa{\displaystyle a\in {\mathcal {A}}_{sa}} is a self-adjoint element, then at least for every oddnN{\displaystyle n\in \mathbb {N} } there is a uniquely determined self-adjoint elementbAsa{\displaystyle b\in {\mathcal {A}}_{sa}} withbn=a{\displaystyle b^{n}=a}.[20]

Similarly, for a positive elementa{\displaystyle a} of a C*-algebraA{\displaystyle {\mathcal {A}}}, eachα0{\displaystyle \alpha \geq 0} defines a uniquely determined positive elementaα{\displaystyle a^{\alpha }} ofC(a){\displaystyle C^{*}(a)}, such thataαaβ=aα+β{\displaystyle a^{\alpha }a^{\beta }=a^{\alpha +\beta }} holds for allα,β0{\displaystyle \alpha ,\beta \geq 0}. Ifa{\displaystyle a} is invertible, this can also be extended to negative values ofα{\displaystyle \alpha }.[19]

Absolute value

[edit]

IfaA{\displaystyle a\in {\mathcal {A}}}, then the elementaa{\displaystyle a^{*}a} is positive, so that the absolute value can be defined by the continuous functional calculus|a|=aa{\displaystyle |a|={\sqrt {a^{*}a}}}, since it is continuous on the positive realnumbers.[21]

Leta{\displaystyle a} be a self-adjoint element of a C*-algebraA{\displaystyle {\mathcal {A}}}, then there exist positive elementsa+,aA+{\displaystyle a_{+},a_{-}\in {\mathcal {A}}_{+}}, such thata=a+a{\displaystyle a=a_{+}-a_{-}} witha+a=aa+=0{\displaystyle a_{+}a_{-}=a_{-}a_{+}=0} holds. The elementsa+{\displaystyle a_{+}} anda{\displaystyle a_{-}} are also referred to as thepositive and negative parts.[22] In addition,|a|=a++a{\displaystyle |a|=a_{+}+a_{-}}holds.[23]

Proof. The functionsf+(z)=max(z,0){\displaystyle f_{+}(z)=\max(z,0)} andf(z)=min(z,0){\displaystyle f_{-}(z)=-\min(z,0)} are continuous functions onσ(a)R{\displaystyle \sigma (a)\subseteq \mathbb {R} } withId(z)=z=f+(z)f(z){\displaystyle \operatorname {Id} (z)=z=f_{+}(z)-f_{-}(z)} andf+(z)f(z)=f(z)f+(z)=0{\displaystyle f_{+}(z)f_{-}(z)=f_{-}(z)f_{+}(z)=0}. Puta+=f+(a){\displaystyle a_{+}=f_{+}(a)} anda=f(a){\displaystyle a_{-}=f_{-}(a)}. According to the spectral mapping theorem,a+{\displaystyle a_{+}} anda{\displaystyle a_{-}} are positive elements for whicha=Id(a)=(f+f)(a)=f+(a)f(a)=a+a{\displaystyle a=\operatorname {Id} (a)=(f_{+}-f_{-})(a)=f_{+}(a)-f_{-}(a)=a_{+}-a_{-}} anda+a=f+(a)f(a)=(f+f)(a)=0=(ff+)(a)=f(a)f+(a)=aa+{\displaystyle a_{+}a_{-}=f_{+}(a)f_{-}(a)=(f_{+}f_{-})(a)=0=(f_{-}f_{+})(a)=f_{-}(a)f_{+}(a)=a_{-}a_{+}}holds.[22] Furthermore,f+(z)+f(z)=|z|=zz=z2{\textstyle f_{+}(z)+f_{-}(z)=|z|={\sqrt {z^{*}z}}={\sqrt {z^{2}}}}, such thata++a=f+(a)+f(a)=|a|=aa=a2{\textstyle a_{+}+a_{-}=f_{+}(a)+f_{-}(a)=|a|={\sqrt {a^{*}a}}={\sqrt {a^{2}}}} holds.[23]

Unitary elements

[edit]

Ifa{\displaystyle a} is a self-adjoint element of a C*-algebraA{\displaystyle {\mathcal {A}}} with unit elemente{\displaystyle e}, thenu=eia{\displaystyle u=\mathrm {e} ^{\mathrm {i} a}} is unitary, wherei{\displaystyle \mathrm {i} } denotes theimaginary unit. Conversely, ifuAU{\displaystyle u\in {\mathcal {A}}_{U}} is an unitary element, with the restriction that the spectrum is aproper subset of the unit circle, i.e.σ(u)T{\displaystyle \sigma (u)\subsetneq \mathbb {T} }, there exists a self-adjoint elementaAsa{\displaystyle a\in {\mathcal {A}}_{sa}} withu=eia{\displaystyle u=\mathrm {e} ^{\mathrm {i} a}}.[24]

Proof.[24] It isu=f(a){\displaystyle u=f(a)} withf:RC, xeix{\displaystyle f\colon \mathbb {R} \to \mathbb {C} ,\ x\mapsto \mathrm {e} ^{\mathrm {i} x}}, sincea{\displaystyle a} is self-adjoint, it follows thatσ(a)R{\displaystyle \sigma (a)\subset \mathbb {R} }, i.e.f{\displaystyle f} is a function on the spectrum ofa{\displaystyle a}. Sinceff¯=f¯f=1{\displaystyle f\cdot {\overline {f}}={\overline {f}}\cdot f=1}, using the functional calculusuu=uu=e{\displaystyle uu^{*}=u^{*}u=e} follows, i.e.u{\displaystyle u} is unitary. Since for the other statement there is az0T{\displaystyle z_{0}\in \mathbb {T} }, such thatσ(u){eizz0zz0+2π}{\displaystyle \sigma (u)\subseteq \{\mathrm {e} ^{\mathrm {i} z}\mid z_{0}\leq z\leq z_{0}+2\pi \}} the functionf(eiz)=z{\displaystyle f(\mathrm {e} ^{\mathrm {i} z})=z} is a real-valued continuous function on the spectrumσ(u){\displaystyle \sigma (u)} forz0zz0+2π{\displaystyle z_{0}\leq z\leq z_{0}+2\pi }, such thata=f(u){\displaystyle a=f(u)} is a self-adjoint element that satisfieseia=eif(u)=u{\displaystyle \mathrm {e} ^{\mathrm {i} a}=\mathrm {e} ^{\mathrm {i} f(u)}=u}.

Spectral decomposition theorem

[edit]

LetA{\displaystyle {\mathcal {A}}} be an unital C*-algebra andaAN{\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Let the spectrum consist ofn{\displaystyle n} pairwisedisjointclosed subsetsσkC{\displaystyle \sigma _{k}\subset \mathbb {C} } for all1kn{\displaystyle 1\leq k\leq n}, i.e.σ(a)=σ1σn{\displaystyle \sigma (a)=\sigma _{1}\sqcup \cdots \sqcup \sigma _{n}}. Then there exist projectionsp1,,pnA{\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {A}}} that have the following properties for all1j,kn{\displaystyle 1\leq j,k\leq n}:[25]

In particular, there is a decompositiona=k=1nak{\textstyle a=\sum _{k=1}^{n}a_{k}} for whichσ(ak)=σk{\displaystyle \sigma (a_{k})=\sigma _{k}} holds for all1kn{\displaystyle 1\leq k\leq n}.

Proof.[25] Since allσk{\displaystyle \sigma _{k}} are closed, thecharacteristic functionsχσk{\displaystyle \chi _{\sigma _{k}}} are continuous onσ(a){\displaystyle \sigma (a)}. Now letpk:=χσk(a){\displaystyle p_{k}:=\chi _{\sigma _{k}}(a)} be defined using the continuous functional. As theσk{\displaystyle \sigma _{k}} are pairwise disjoint,χσjχσk=δjkχσk{\displaystyle \chi _{\sigma _{j}}\chi _{\sigma _{k}}=\delta _{jk}\chi _{\sigma _{k}}} andk=1nχσk=χk=1nσk=χσ(a)=1{\textstyle \sum _{k=1}^{n}\chi _{\sigma _{k}}=\chi _{\cup _{k=1}^{n}\sigma _{k}}=\chi _{\sigma (a)}={\textbf {1}}} holds and thus thepk{\displaystyle p_{k}} satisfy the claimed properties, as can be seen from the properties of the continuous functional equation. For the last statement, letak=apk=Id(a)χσk(a)=(Idχσk)(a){\displaystyle a_{k}=ap_{k}=\operatorname {Id} (a)\cdot \chi _{\sigma _{k}}(a)=(\operatorname {Id} \cdot \chi _{\sigma _{k}})(a)}.

Notes

[edit]
  1. ^Dixmier 1977, p. 3.
  2. ^Dixmier 1977, pp. 12–13.
  3. ^abcKadison & Ringrose 1983, p. 272.
  4. ^abDixmier 1977, p. 5,13.
  5. ^abDixmier 1977, p. 14.
  6. ^Dixmier 1977, p. 11.
  7. ^abcdDixmier 1977, p. 13.
  8. ^Reed & Simon 1980, pp. 222–223.
  9. ^Dixmier 1977, pp. 5, 13.
  10. ^Kaniuth 2009, p. 147.
  11. ^Blackadar 2006, p. 62.
  12. ^Deitmar & Echterhoff 2014, p. 55.
  13. ^abKadison & Ringrose 1983, p. 275.
  14. ^Kadison & Ringrose 1983, p. 239.
  15. ^abKadison & Ringrose 1983, p. 271.
  16. ^Kaballo 2014, p. 332.
  17. ^Schmüdgen 2012, p. 93.
  18. ^Reed & Simon 1980, p. 222.
  19. ^abcKadison & Ringrose 1983, pp. 248–249.
  20. ^Blackadar 2006, p. 63.
  21. ^Blackadar 2006, pp. 64–65.
  22. ^abKadison & Ringrose 1983, p. 246.
  23. ^abDixmier 1977, p. 15.
  24. ^abKadison & Ringrose 1983, pp. 274–275.
  25. ^abKaballo 2014, p. 375.

References

[edit]
  • Blackadar, Bruce (2006).Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer.ISBN 3-540-28486-9.
  • Deitmar, Anton; Echterhoff, Siegfried (2014).Principles of Harmonic Analysis. Second Edition. Springer.ISBN 978-3-319-05791-0.
  • Dixmier, Jacques (1969).Les C*-algèbres et leurs représentations (in French). Gauthier-Villars.
  • Dixmier, Jacques (1977).C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland.ISBN 0-7204-0762-1. English translation ofLes C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kaballo, Winfried (2014).Aufbaukurs Funktionalanalysis und Operatortheorie (in German). Berlin/Heidelberg: Springer.ISBN 978-3-642-37794-5.
  • Kadison, Richard V.; Ringrose, John R. (1983).Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press.ISBN 0-12-393301-3.
  • Kaniuth, Eberhard (2009).A Course in Commutative Banach Algebras. Springer.ISBN 978-0-387-72475-1.
  • Schmüdgen, Konrad (2012).Unbounded Self-adjoint Operators on Hilbert Space. Springer.ISBN 978-94-007-4752-4.
  • Reed, Michael; Simon, Barry (1980).Methods of modern mathematical physics. vol. 1. Functional analysis. San Diego, CA: Academic Press.ISBN 0-12-585050-6.
  • Takesaki, Masamichi (1979).Theory of Operator Algebras I. Heidelberg/Berlin: Springer.ISBN 3-540-90391-7.

External links

[edit]
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications
Retrieved from "https://en.wikipedia.org/w/index.php?title=Continuous_functional_calculus&oldid=1281034757"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp