Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bounding point

From Wikipedia, the free encyclopedia
Mathematical concept related to subsets of vector spaces

Infunctional analysis, a branch ofmathematics, abounding point of asubset of avector space is a conceptual extension of theboundary of aset.

Definition

[edit]

LetA{\displaystyle A} be a subset of a vector spaceX{\displaystyle X}. ThenxX{\displaystyle x\in X} is abounding point forA{\displaystyle A} if it is neither aninternal point forA{\displaystyle A} nor itscomplement.[1]

References

[edit]
  1. ^Henry Hermes; Joseph P. La Salle (1969).Functional Analysis & Time Optimal Control.Academic Press. p. 8.ISBN 9780123426505.
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Stub icon

Thismathematical analysis–related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Bounding_point&oldid=1119699639"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp