Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Binomial transform

Incombinatorics, thebinomial transform is asequence transformation (i.e., a transform of asequence) that computes itsforward differences. It is closely related to theEuler transform, which is the result of applying the binomial transform to the sequence associated with itsordinary generating function.

Definition

edit

Thebinomial transform,T, of a sequence,{an}, is the sequence{sn} defined by

sn=k=0n(1)k(nk)ak.{\displaystyle s_{n}=\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}a_{k}.} 

Formally, one may write

sn=(Ta)n=k=0nTnkak{\displaystyle s_{n}=(Ta)_{n}=\sum _{k=0}^{n}T_{nk}a_{k}} 

for the transformation, whereT is an infinite-dimensionaloperator with matrix elementsTnk.The transform is aninvolution, that is,

TT=1{\displaystyle TT=1} 

or, using index notation,

k=0TnkTkm=δnm{\displaystyle \sum _{k=0}^{\infty }T_{nk}T_{km}=\delta _{nm}} 

whereδnm{\displaystyle \delta _{nm}}  is theKronecker delta. The original series can be regained by

an=k=0n(1)k(nk)sk.{\displaystyle a_{n}=\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}s_{k}.} 

The binomial transform of a sequence is just then-thforward differences of the sequence, with odd differences carrying a negative sign, namely:

s0=a0s1=(Δa)0=a1+a0s2=(Δ2a)0=(a2+a1)+(a1+a0)=a22a1+a0sn=(1)n(Δna)0{\displaystyle {\begin{aligned}s_{0}&=a_{0}\\s_{1}&=-(\Delta a)_{0}=-a_{1}+a_{0}\\s_{2}&=(\Delta ^{2}a)_{0}=-(-a_{2}+a_{1})+(-a_{1}+a_{0})=a_{2}-2a_{1}+a_{0}\\&\;\;\vdots \\s_{n}&=(-1)^{n}(\Delta ^{n}a)_{0}\end{aligned}}} 

whereΔ is theforward difference operator.

Some authors define the binomial transform with an extra sign, so that it is not self-inverse:

tn=k=0n(1)nk(nk)ak{\displaystyle t_{n}=\sum _{k=0}^{n}(-1)^{n-k}{\binom {n}{k}}a_{k}} 

whose inverse is

an=k=0n(nk)tk.{\displaystyle a_{n}=\sum _{k=0}^{n}{\binom {n}{k}}t_{k}.} 

In this case the former transform is called theinverse binomial transform, and the latter is justbinomial transform. This is standard usage for example inOn-Line Encyclopedia of Integer Sequences.

Example

edit

Both versions of the binomial transform appear in difference tables. Consider the following difference table:

0 1 10 63 324 1485
 1 9 53 261 1161
  8 44 208 900
   36 164 692
    128 528
     400

Each line is the difference of the previous line. (Then-th number in them-th line isam,n = 3n−2(2m+1n2 + 2m(1+6m)n + 2m-19m2), and the difference equationam+1,n =am,n+1 -am,n holds.)

The top line read from left to right is {an} = 0, 1, 10, 63, 324, 1485, ... The diagonal with the same starting point 0 is {tn} = 0, 1, 8, 36, 128, 400, ... {tn} is the noninvolutive binomial transform of {an}.

The top line read from right to left is {bn} = 1485, 324, 63, 10, 1, 0, ... The cross-diagonal with the same starting point 1485 is {sn} = 1485, 1161, 900, 692, 528, 400, ... {sn} is the involutive binomial transform of {bn}.

Ordinary generating function

edit

The transform connects thegenerating functions associated with the series. For theordinary generating function, let

f(x)=n=0anxn{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}} 

and

g(x)=n=0snxn{\displaystyle g(x)=\sum _{n=0}^{\infty }s_{n}x^{n}} 

then

g(x)=(Tf)(x)=11xf(x1x).{\displaystyle g(x)=(Tf)(x)={\frac {1}{1-x}}f{\left({\frac {-x}{1-x}}\right)}.} 

Euler transform

edit

The relationship between the ordinary generating functions is sometimes called theEuler transform. It commonly makes its appearance in one of two different ways. In one form, it is used toaccelerate the convergence of analternating series. That is, one has the identity

n=0(1)nan=n=0(1)n(Δna)02n+1{\displaystyle \sum _{n=0}^{\infty }{\left(-1\right)}^{n}a_{n}=\sum _{n=0}^{\infty }{\left(-1\right)}^{n}{\frac {(\Delta ^{n}a)_{0}}{2^{n+1}}}} 

which is obtained by substitutingx = 1/2 into the last formula above. The terms on the right hand side typically become much smaller, much more rapidly, thus allowing rapid numerical summation.

The Euler transform can be generalized (Borisov B. and Shkodrov V., 2007):

n=0(1)n(n+pn)an=n=0(1)n(n+pn)(Δna)02n+p+1,{\displaystyle \sum _{n=0}^{\infty }{\left(-1\right)}^{n}{\binom {n+p}{n}}a_{n}=\sum _{n=0}^{\infty }{\left(-1\right)}^{n}{\binom {n+p}{n}}{\frac {(\Delta ^{n}a)_{0}}{2^{n+p+1}}},} 

wherep = 0, 1, 2,....

The Euler transform is also frequently applied to theEuler hypergeometric integral2F1{\displaystyle \,_{2}F_{1}} . Here, the Euler transform takes the form:

2F1(a,b;c;z)=(1z)b2F1(ca,b;c;zz1).{\displaystyle \,_{2}F_{1}(a,b;c;z)=(1-z)^{-b}\,_{2}F_{1}\left(c-a,b;c;{\frac {z}{z-1}}\right).} 

[See[1] for generalizations to other hypergeometric series.]

The binomial transform, and its variation as the Euler transform, is notable for its connection to thecontinued fraction representation of a number. Let0<x<1{\displaystyle 0<x<1}  have the continued fraction representation

x=[0;a1,a2,a3,]{\displaystyle x=[0;a_{1},a_{2},a_{3},\cdots ]} 

then

x1x=[0;a11,a2,a3,]{\displaystyle {\frac {x}{1-x}}=[0;a_{1}-1,a_{2},a_{3},\cdots ]} 

and

x1+x=[0;a1+1,a2,a3,].{\displaystyle {\frac {x}{1+x}}=[0;a_{1}+1,a_{2},a_{3},\cdots ].} 

Exponential generating function

edit

For theexponential generating function, let

f¯(x)=n=0anxnn!{\displaystyle {\overline {f}}(x)=\sum _{n=0}^{\infty }a_{n}{\frac {x^{n}}{n!}}} 

and

g¯(x)=n=0snxnn!{\displaystyle {\overline {g}}(x)=\sum _{n=0}^{\infty }s_{n}{\frac {x^{n}}{n!}}} 

then

g¯(x)=(Tf¯)(x)=exf¯(x).{\displaystyle {\overline {g}}(x)=(T{\overline {f}})(x)=e^{x}{\overline {f}}(-x).} 

TheBorel transform will convert the ordinary generating function to the exponential generating function.

Binomial convolution

edit

Let{an}{\displaystyle \{a_{n}\}}  and{bn}{\displaystyle \{b_{n}\}} ,n=0,1,2,,{\displaystyle n=0,1,2,\ldots ,}  be sequences of complex numbers. Their binomial convolution is defined by(ab)n=k=0n(nk)akbnk,  n=0,1,2,{\displaystyle (a\circ b)_{n}=\sum _{k=0}^{n}{\binom {n}{k}}a_{k}b_{n-k},\ \ n=0,1,2,\ldots } This convolution can be found in the book by R.L. Graham, D.E. Knuth and O. Patashnik: Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley (1989). It is easy to see that the binomial convolution is associative and commutative, and the sequence{en}{\displaystyle \{e_{n}\}}  defined bye0=1{\displaystyle e_{0}=1}  anden=0{\displaystyle e_{n}=0}  forn=1,2,,{\displaystyle n=1,2,\ldots ,}  serves as the identity under the binomial convolution. Further, it is easy to see that the sequences{an}{\displaystyle \{a_{n}\}}  witha00{\displaystyle a_{0}\neq 0}  possess an inverse. Thus the set of sequences{an}{\displaystyle \{a_{n}\}}  witha00{\displaystyle a_{0}\neq 0}  forms an Abelian group under the binomial convolution.

The binomial convolution arises naturally from the product of the exponential generating functions. In fact,(n=0anxnn!)(n=0bnxnn!)=n=0(ab)nxnn!.{\displaystyle \left(\sum _{n=0}^{\infty }a_{n}{\frac {x^{n}}{n!}}\right)\left(\sum _{n=0}^{\infty }b_{n}{\frac {x^{n}}{n!}}\right)=\sum _{n=0}^{\infty }(a\circ b)_{n}{\frac {x^{n}}{n!}}.} 


The binomial transform can be written in terms of binomial convolution. Letλn=(1)n{\displaystyle \lambda _{n}=(-1)^{n}}  and1n=1{\displaystyle 1_{n}=1}  for alln{\displaystyle n} . Then(Ta)n=(λa1)n.{\displaystyle (Ta)_{n}=(\lambda a\circ 1)_{n}.} The formulatn=k=0n(1)nk(nk)akan=k=0n(nk)tk{\displaystyle t_{n}=\sum _{k=0}^{n}{\left(-1\right)}^{n-k}{\binom {n}{k}}a_{k}\iff a_{n}=\sum _{k=0}^{n}{\binom {n}{k}}t_{k}} can be interpreted as a Möbius inversion type formulatn=(aλ)nan=(t1)n{\displaystyle t_{n}=(a\circ \lambda )_{n}\iff a_{n}=(t\circ 1)_{n}} sinceλn{\displaystyle \lambda _{n}}  is the inverse of1n{\displaystyle 1_{n}}  under the binomial convolution.


There is also another binomial convolution in the mathematical literature. The binomial convolution of arithmetical functionsf{\displaystyle f}  andg{\displaystyle g}  is defined as(fBg)(n)=dn(p(νp(n)νp(d)))f(d)g(n/d),{\displaystyle (f\circ _{B}g)(n)=\sum _{d\mid n}\left(\prod _{p}{\binom {\nu _{p}(n)}{\nu _{p}(d)}}\right)f(d)g(n/d),} wheren=ppνp(n){\displaystyle n=\prod _{p}p^{\nu _{p}(n)}}  is the canonical factorization of a positive integern{\displaystyle n}  and(νp(n)νp(d)){\displaystyle {\binom {\nu _{p}(n)}{\nu _{p}(d)}}}  is the binomial coefficient. This convolution appears in the book by P. J. McCarthy (1986) and was further studied by L. Toth and P. Haukkanen (2009).

Integral representation

edit

When the sequence can be interpolated by acomplex analytic function, then the binomial transform of the sequence can be represented by means of aNörlund–Rice integral on the interpolating function.

Generalizations

edit

Prodinger gives a related,modular-like transformation: letting

un=k=0n(nk)ak(c)nkbk{\displaystyle u_{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{k}{\left(-c\right)}^{n-k}b_{k}} 

gives

U(x)=1cx+1B(axcx+1){\displaystyle U(x)={\frac {1}{cx+1}}B{\left({\frac {ax}{cx+1}}\right)}} 

whereU andB are the ordinary generating functions associated with the series{un}{\displaystyle \{u_{n}\}}  and{bn}{\displaystyle \{b_{n}\}} , respectively.

The risingk-binomial transform is sometimes defined as

j=0n(nj)jkaj.{\displaystyle \sum _{j=0}^{n}{\binom {n}{j}}j^{k}a_{j}.} 

The fallingk-binomial transform is

j=0n(nj)jnkaj.{\displaystyle \sum _{j=0}^{n}{\binom {n}{j}}j^{n-k}a_{j}.} 

Both are homomorphisms of thekernel of theHankel transform of a series.

In the case where the binomial transform is defined as

i=0n(1)ni(ni)ai=bn.{\displaystyle \sum _{i=0}^{n}{\left(-1\right)}^{n-i}{\binom {n}{i}}a_{i}=b_{n}.} 

Let this be equal to the functionJ(a)n=bn.{\displaystyle {\mathfrak {J}}(a)_{n}=b_{n}.} 

If a newforward difference table is made and the first elements from each row of this table are taken to form a new sequence{bn}{\displaystyle \{b_{n}\}} , then the second binomial transform of the original sequence is,

J2(a)n=i=0n(2)ni(ni)ai.{\displaystyle {\mathfrak {J}}^{2}(a)_{n}=\sum _{i=0}^{n}(-2)^{n-i}{\binom {n}{i}}a_{i}.} 

If the same process is repeatedk times, then it follows that,

Jk(a)n=bn=i=0n(k)ni(ni)ai.{\displaystyle {\mathfrak {J}}^{k}(a)_{n}=b_{n}=\sum _{i=0}^{n}(-k)^{n-i}{\binom {n}{i}}a_{i}.} 

Its inverse is,

Jk(b)n=an=i=0nkni(ni)bi.{\displaystyle {\mathfrak {J}}^{-k}(b)_{n}=a_{n}=\sum _{i=0}^{n}k^{n-i}{\binom {n}{i}}b_{i}.} 

This can be generalized as,

Jk(a)n=bn=(Ek)na0{\displaystyle {\mathfrak {J}}^{k}(a)_{n}=b_{n}=(\mathbf {E} -k)^{n}a_{0}} 

whereE{\displaystyle \mathbf {E} }  is theshift operator.

Its inverse is

Jk(b)n=an=(E+k)nb0.{\displaystyle {\mathfrak {J}}^{-k}(b)_{n}=a_{n}=(\mathbf {E} +k)^{n}b_{0}.} 

See also

edit

References

edit
  1. ^Miller, Allen R.; Paris, R. B. (2010)."Euler-type transformations for the generalized hypergeometric function".Z. Angew. Math. Phys.62 (1):31–45.doi:10.1007/s00033-010-0085-0.S2CID 30484300.
  • John H. Conway and Richard K. Guy, 1996,The Book of Numbers
  • Donald E. Knuth,The Art of Computer Programming Vol. 3, (1973) Addison-Wesley, Reading, MA.
  • Helmut Prodinger,Some information about the binomial transform, The Fibonacci Quarterly32 (1994), 412-415.
  • Spivey, Michael Z.; Steil, Laura L. (2006)."The k-Binomial Transforms and the Hankel Transform".Journal of Integer Sequences.9: 06.1.1.Bibcode:2006JIntS...9...11S.
  • Borisov, B.; Shkodrov, V. (2007)."Divergent Series in the Generalized Binomial Transform".Adv. Stud. Cont. Math.14 (1):77–82.
  • Khristo N. Boyadzhiev,Notes on the Binomial Transform, Theory and Table, with Appendix on the Stirling Transform (2018), World Scientific.
  • R.L. Graham, D.E. Knuth and O. Patashnik: Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley (1989).
  • P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, 1986.
  • P. Haukkanen, On a binomial convolution of arithmetical functions, Nieuw Arch. Wisk. (IV) 14 (1996), no. 2, 209--216.
  • L. Toth and P. Haukkanen, On the binomial convolution of arithmetical functions, J. Combinatorics and Number Theory 1(2009), 31-48.
  • P. Haukkanen, Some binomial inversions in terms of ordinary generating functions. Publ. Math. Debr. 47, No. 1-2, 181-191 (1995).

External links

edit

[8]ページ先頭

©2009-2025 Movatter.jp