Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Benaloh cryptosystem

From Wikipedia, the free encyclopedia

TheBenaloh Cryptosystem is an extension of theGoldwasser-Micali cryptosystem (GM) created in 1985 by Josh (Cohen) Benaloh. The main improvement of the Benaloh Cryptosystem over GM is that longer blocks of data can be encrypted at once, whereas in GM each bit is encrypted individually.[1][2][3]

Scheme Definition

[edit]

Like manypublic key cryptosystems, this scheme works in the group(Z/nZ){\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{*}} wheren is a product of two largeprimes. This scheme ishomomorphic and hencemalleable.

Key Generation

[edit]

Given block sizer, a public/private key pair is generated as follows:

  1. Choose large primesp andq such thatr|(p1),gcd(r,(p1)/r)=1,{\displaystyle r\vert (p-1),\operatorname {gcd} (r,(p-1)/r)=1,} andgcd(r,(q1))=1{\displaystyle \operatorname {gcd} (r,(q-1))=1}
  2. Setn=pq,ϕ=(p1)(q1){\displaystyle n=pq,\phi =(p-1)(q-1)}
  3. ChooseyZn{\displaystyle y\in \mathbb {Z} _{n}^{*}} such thatyϕ/r1modn{\displaystyle y^{\phi /r}\not \equiv 1\mod n}.
Note: Ifr is composite, it was pointed out by Fousse et al. in 2011[4] that the above conditions (i.e., those stated in the original paper) are insufficient to guarantee correct decryption, i.e., to guarantee thatD(E(m))=m{\displaystyle D(E(m))=m} in all cases (as should be the case). To address this, the authors propose the following check: letr=p1p2pk{\displaystyle r=p_{1}p_{2}\dots p_{k}} be the prime factorization ofr. ChooseyZn{\displaystyle y\in \mathbb {Z} _{n}^{*}} such that for each factorpi{\displaystyle p_{i}}, it is the case thatyϕ/pi1modn{\displaystyle y^{\phi /p_{i}}\neq 1\mod n}.
  1. Setx=yϕ/rmodn{\displaystyle x=y^{\phi /r}\mod n}

The public key is theny,n{\displaystyle y,n}, and the private key isϕ,x{\displaystyle \phi ,x}.

Message Encryption

[edit]

To encrypt messagemZr{\displaystyle m\in \mathbb {Z} _{r}}:

  1. Choose a randomuZn{\displaystyle u\in \mathbb {Z} _{n}^{*}}
  2. SetEr(m)=ymurmodn{\displaystyle E_{r}(m)=y^{m}u^{r}\mod n}

Message Decryption

[edit]

To decrypt a ciphertextcZn{\displaystyle c\in \mathbb {Z} _{n}^{*}}:

  1. Computea=cϕ/rmodn{\displaystyle a=c^{\phi /r}\mod n}
  2. Outputm=logx(a){\displaystyle m=\log _{x}(a)}, i.e., findm such thatxmamodn{\displaystyle x^{m}\equiv a\mod n}

To understand decryption, first notice that for anymZr{\displaystyle m\in \mathbb {Z} _{r}} anduZn{\displaystyle u\in \mathbb {Z} _{n}^{*}} we have:

a=(c)ϕ/r(ymur)ϕ/r(ym)ϕ/r(ur)ϕ/r(yϕ/r)m(u)ϕ(x)m(u)0xmmodn{\displaystyle a=(c)^{\phi /r}\equiv (y^{m}u^{r})^{\phi /r}\equiv (y^{m})^{\phi /r}(u^{r})^{\phi /r}\equiv (y^{\phi /r})^{m}(u)^{\phi }\equiv (x)^{m}(u)^{0}\equiv x^{m}\mod n}

To recoverm froma, we take thediscrete log ofa basex. Ifr is small, we can recover m by an exhaustive search, i.e. checking ifxiamodn{\displaystyle x^{i}\equiv a\mod n} for all0(r1){\displaystyle 0\dots (r-1)}. For larger values ofr, theBaby-step giant-step algorithm can be used to recoverm inO(r){\displaystyle O({\sqrt {r}})} time and space.

Security

[edit]

The security of this scheme rests on theHigher residuosity problem, specifically, givenz,r andn where the factorization ofn is unknown, it is computationally infeasible to determine whetherz is anrth residue modn, i.e. if there exists anx such thatzxrmodn{\displaystyle z\equiv x^{r}\mod n}.

References

[edit]
  1. ^Cohen, Josh; Ficsher, Michael (1985).A Robust and Verifiable Cryptographically Secure Election Scheme(PDF). Proceedings of 26th IEEE Symposium on Foundations of Computer Science. pp. 372–382.
  2. ^Benaloh, Josh (1987).Verifiable Secret-Ballot Elections (Ph.D. thesis)(PDF).
  3. ^Benaloh, Josh (1994).Dense Probabilistic Encryption(PDF). Workshop on Selected Areas of Cryptography. pp. 120–128.
  4. ^Fousse, Laurent; Lafourcade, Pascal; Alnuaimi, Mohamed (2011). "Benaloh's Dense Probabilistic Encryption Revisited".arXiv:1008.2991 [cs.CR].
Algorithms
Integer factorization
Discrete logarithm
Lattice/SVP/CVP/LWE/SIS
Others
Theory
Standardization
Topics
General
Mathematics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Benaloh_cryptosystem&oldid=977527848"
Category:

[8]ページ先頭

©2009-2026 Movatter.jp