Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Asymmetric relation

From Wikipedia, the free encyclopedia
Binary relation which never occurs in both directions
Not to be confused withAntisymmetric relation.
Transitive binary relations
SymmetricAntisymmetricConnectedWell-foundedHas joinsHas meetsReflexiveIrreflexiveAsymmetric
Total,
Semiconnex
Anti-
reflexive
Equivalence relationGreen tickYGreen tickY
Preorder(Quasiorder)Green tickY
Partial orderGreen tickYGreen tickY
Total preorderGreen tickYGreen tickY
Total orderGreen tickYGreen tickYGreen tickY
PrewellorderingGreen tickYGreen tickYGreen tickY
Well-quasi-orderingGreen tickYGreen tickY
Well-orderingGreen tickYGreen tickYGreen tickYGreen tickY
LatticeGreen tickYGreen tickYGreen tickYGreen tickY
Join-semilatticeGreen tickYGreen tickYGreen tickY
Meet-semilatticeGreen tickYGreen tickYGreen tickY
Strict partial orderGreen tickYGreen tickYGreen tickY
Strict weak orderGreen tickYGreen tickYGreen tickY
Strict total orderGreen tickYGreen tickYGreen tickYGreen tickY
SymmetricAntisymmetricConnectedWell-foundedHas joinsHas meetsReflexiveIrreflexiveAsymmetric
Definitions,
for alla,b{\displaystyle a,b} andS:{\displaystyle S\neq \varnothing :}
aRbbRa{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}}aRb and bRaa=b{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}}abaRb or bRa{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}}minSexists{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}}abexists{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}}abexists{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}}aRa{\displaystyle aRa}not aRa{\displaystyle {\text{not }}aRa}aRbnot bRa{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}}
Green tickY indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed
in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric,
is indicated byGreen tickY in the "Symmetric" column and in the "Antisymmetric" column, respectively.

All definitions tacitly require thehomogeneous relationR{\displaystyle R} betransitive: for alla,b,c,{\displaystyle a,b,c,} ifaRb{\displaystyle aRb} andbRc{\displaystyle bRc} thenaRc.{\displaystyle aRc.}
A term's definition may require additional properties that are not listed in this table.

Inmathematics, anasymmetric relation is abinary relationR{\displaystyle R} on asetX{\displaystyle X} where for alla,bX,{\displaystyle a,b\in X,} ifa{\displaystyle a} is related tob{\displaystyle b} thenb{\displaystyle b} isnot related toa.{\displaystyle a.}[1]

Formal definition

[edit]

Preliminaries

[edit]

A binary relation onX{\displaystyle X} is any subsetR{\displaystyle R} ofX×X.{\displaystyle X\times X.} Givena,bX,{\displaystyle a,b\in X,} writeaRb{\displaystyle aRb} if and only if(a,b)R,{\displaystyle (a,b)\in R,} which means thataRb{\displaystyle aRb} is shorthand for(a,b)R.{\displaystyle (a,b)\in R.} The expressionaRb{\displaystyle aRb} is read as "a{\displaystyle a} is related tob{\displaystyle b} byR.{\displaystyle R.}"

Definition

[edit]

The binary relationR{\displaystyle R} is calledasymmetric if for alla,bX,{\displaystyle a,b\in X,} ifaRb{\displaystyle aRb} is true thenbRa{\displaystyle bRa} is false; that is, if(a,b)R{\displaystyle (a,b)\in R} then(b,a)R.{\displaystyle (b,a)\not \in R.} This can be written in the notation offirst-order logic asa,bX:aRb¬(bRa).{\displaystyle \forall a,b\in X:aRb\implies \lnot (bRa).}Alogically equivalent definition is:

for alla,bX,{\displaystyle a,b\in X,} at least one ofaRb{\displaystyle aRb} andbRa{\displaystyle bRa} isfalse,

which in first-order logic can be written as:a,bX:¬(aRbbRa).{\displaystyle \forall a,b\in X:\lnot (aRb\wedge bRa).}A relation is asymmetric if and only if it is bothantisymmetric andirreflexive,[2] so this may also be taken as a definition.

Examples

[edit]

An example of an asymmetric relation is the "less than" relation<{\displaystyle \,<\,} betweenreal numbers: ifx<y{\displaystyle x<y} then necessarilyy{\displaystyle y} is not less thanx.{\displaystyle x.} More generally, any strict partial order is an asymmetric relation. Not all asymmetric relations are strict partial orders. An example of an asymmetric non-transitive, evenantitransitive relation is therock paper scissors relation: ifX{\displaystyle X} beatsY,{\displaystyle Y,} thenY{\displaystyle Y} does not beatX;{\displaystyle X;} and ifX{\displaystyle X} beatsY{\displaystyle Y} andY{\displaystyle Y} beatsZ,{\displaystyle Z,} thenX{\displaystyle X} does not beatZ.{\displaystyle Z.}

Restrictions andconverses of asymmetric relations are also asymmetric. For example, the restriction of<{\displaystyle \,<\,} from the reals to the integers is still asymmetric, and the converse or dual>{\displaystyle \,>\,} of<{\displaystyle \,<\,} is also asymmetric.

An asymmetric relation need not have theconnex property. For example, thestrict subset relation{\displaystyle \,\subsetneq \,} is asymmetric, and neither of the sets{1,2}{\displaystyle \{1,2\}} and{3,4}{\displaystyle \{3,4\}} is a strict subset of the other. A relation is connex if and only if its complement is asymmetric.

A non-example is the "less than or equal" relation{\displaystyle \leq }. This is not asymmetric, because reversing for example,xx{\displaystyle x\leq x} producesxx{\displaystyle x\leq x} and both are true. The less-than-or-equal relation is an example of a relation that is neither symmetric nor asymmetric, showing that asymmetry is not the same thing as "notsymmetric".

Theempty relation is the only relation that is (vacuously) both symmetric and asymmetric.

Properties

[edit]

The following conditions are sufficient for a relationR{\displaystyle R} to be asymmetric:[3]

See also

[edit]

References

[edit]
  1. ^Gries, David;Schneider, Fred B. (1993),A Logical Approach to Discrete Math, Springer-Verlag, p. 273.
  2. ^Nievergelt, Yves (2002),Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography, Springer-Verlag, p. 158.
  3. ^Burghardt, Jochen (2018). "Simple Laws about Nonprominent Properties of Binary Relations".arXiv:1806.05036 [math.LO].
  4. ^Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (2007).Transitive Closures of Binary Relations I(PDF). Prague: School of Mathematics - Physics Charles University. p. 1. Archived fromthe original(PDF) on 2013-11-02. Retrieved2013-08-20. Lemma 1.1 (iv). Note that this source refers to asymmetric relations as "strictly antisymmetric".
Retrieved from "https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1318855697"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp