Movatterモバイル変換


[0]ホーム

URL:


Wikipedia

Bisection

(Redirected fromAngle bisector)
Not to be confused withDissection.
For the bisection theorem in measure theory, seeHam sandwich theorem. For the root-finding method, seeBisection method. For other uses, seeBisect (disambiguation).

Ingeometry,bisection is the division of something into two equal orcongruent parts (having the same shape and size). Usually it involves a bisectingline, also called abisector. The most often considered types of bisectors are thesegment bisector, a line that passes through themidpoint of a givensegment, and theangle bisector, a line that passes through theapex of anangle (that divides it into two equal angles).Inthree-dimensional space, bisection is usually done by a bisectingplane, also called thebisector.

Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED.

Perpendicular line segment bisector

edit

Definition

edit
 
Perpendicular bisector of a line segment

(D)|XA|=|XB|{\displaystyle \quad |XA|=|XB|} .

The proof follows from|MA|=|MB|{\displaystyle |MA|=|MB|}  andPythagoras' theorem:

|XA|2=|XM|2+|MA|2=|XM|2+|MB|2=|XB|2.{\displaystyle |XA|^{2}=|XM|^{2}+|MA|^{2}=|XM|^{2}+|MB|^{2}=|XB|^{2}\;.} 

Property(D) is usually used for the construction of a perpendicular bisector:

Construction by straight edge and compass

edit
 
Construction by straight edge and compass

In classical geometry, the bisection is a simplecompass and straightedge construction, whose possibility depends on the ability to drawarcs of equal radii and different centers:

The segmentAB{\displaystyle AB}  is bisected by drawing intersecting circles of equal radiusr>12|AB|{\displaystyle r>{\tfrac {1}{2}}|AB|} , whose centers are the endpoints of the segment. The line determined by the points of intersection of the two circles is the perpendicular bisector of the segment.
Because the construction of the bisector is done without the knowledge of the segment's midpointM{\displaystyle M} , the construction is used for determiningM{\displaystyle M}  as the intersection of the bisector and the line segment.

This construction is in fact used when constructing aline perpendicular to a given lineg{\displaystyle g}  at agiven pointP{\displaystyle P} : drawing a circle whose center isP{\displaystyle P}  such that it intersects the lineg{\displaystyle g}  in two pointsA,B{\displaystyle A,B} , and the perpendicular to be constructed is the one bisecting segmentAB{\displaystyle AB} .

Equations

edit

Ifa,b{\displaystyle {\vec {a}},{\vec {b}}}  are the position vectors of two pointsA,B{\displaystyle A,B} , then its midpoint isM:m=a+b2{\displaystyle M:{\vec {m}}={\tfrac {{\vec {a}}+{\vec {b}}}{2}}}  and vectorab{\displaystyle {\vec {a}}-{\vec {b}}}  is anormal vector of the perpendicular line segment bisector. Hence its vector equation is(xm)(ab)=0{\displaystyle ({\vec {x}}-{\vec {m}})\cdot ({\vec {a}}-{\vec {b}})=0} . Insertingm={\displaystyle {\vec {m}}=\cdots }  and expanding the equation leads to the vector equation

(V)x(ab)=12(a2b2).{\displaystyle \quad {\vec {x}}\cdot ({\vec {a}}-{\vec {b}})={\tfrac {1}{2}}({\vec {a}}^{2}-{\vec {b}}^{2}).} 

WithA=(a1,a2),B=(b1,b2){\displaystyle A=(a_{1},a_{2}),B=(b_{1},b_{2})}  one gets the equation in coordinate form:

(C)(a1b1)x+(a2b2)y=12(a12b12+a22b22).{\displaystyle \quad (a_{1}-b_{1})x+(a_{2}-b_{2})y={\tfrac {1}{2}}(a_{1}^{2}-b_{1}^{2}+a_{2}^{2}-b_{2}^{2})\;.} 

Or explicitly:
(E)y=m(xx0)+y0{\displaystyle \quad y=m(x-x_{0})+y_{0}} ,
wherem=b1a1b2a2{\displaystyle \;m=-{\tfrac {b_{1}-a_{1}}{b_{2}-a_{2}}}} ,x0=12(a1+b1){\displaystyle \;x_{0}={\tfrac {1}{2}}(a_{1}+b_{1})\;} , andy0=12(a2+b2){\displaystyle \;y_{0}={\tfrac {1}{2}}(a_{2}+b_{2})\;} .

Applications

edit

Perpendicular line segment bisectors were used solving various geometric problems:

  1. Construction of the center of aThales' circle,
  2. Construction of the center of theExcircle of a triangle,
  3. Voronoi diagram boundaries consist of segments of such lines or planes.
 
Bisector plane

Perpendicular line segment bisectors in space

edit
  • Theperpendicular bisector of a line segment is aplane, which meets the segment at itsmidpoint perpendicularly.

Its vector equation is literally the same as in the plane case:

(V)x(ab)=12(a2b2).{\displaystyle \quad {\vec {x}}\cdot ({\vec {a}}-{\vec {b}})={\tfrac {1}{2}}({\vec {a}}^{2}-{\vec {b}}^{2}).} 

WithA=(a1,a2,a3),B=(b1,b2,b3){\displaystyle A=(a_{1},a_{2},a_{3}),B=(b_{1},b_{2},b_{3})}  one gets the equation in coordinate form:

(C3)(a1b1)x+(a2b2)y+(a3b3)z=12(a12b12+a22b22+a32b32).{\displaystyle \quad (a_{1}-b_{1})x+(a_{2}-b_{2})y+(a_{3}-b_{3})z={\tfrac {1}{2}}(a_{1}^{2}-b_{1}^{2}+a_{2}^{2}-b_{2}^{2}+a_{3}^{2}-b_{3}^{2})\;.} 

Property(D) (see above) is literally true in space, too:
(D) The perpendicular bisector plane of a segmentAB{\displaystyle AB}  has for any pointX{\displaystyle X}  the property:|XA|=|XB|{\displaystyle \;|XA|=|XB|} .

Angle bisector

edit
 
Bisection of an angle using a compass and straightedge

Anangle bisector divides theangle into two angles withequal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle.

The 'interior' or 'internal bisector' of an angle is the line,half-line, or line segment that divides an angle of less than 180° into two equal angles. The 'exterior' or 'external bisector' is the line that divides thesupplementary angle (of 180° minus the original angle), formed by one side forming the original angle and the extension of the other side, into two equal angles.[1]

To bisect an angle withstraightedge and compass, one draws a circle whose center is the vertex. The circle meets the angle at two points: one on each leg. Using each of these points as a center, draw two circles of the same size. The intersection of the circles (two points) determines a line that is the angle bisector.

The proof of the correctness of this construction is fairly intuitive, relying on the symmetry of the problem. Thetrisection of an angle (dividing it into three equal parts) cannot be achieved with the compass and ruler alone (this was first proved byPierre Wantzel).

The internal and external bisectors of an angle areperpendicular. If the angle is formed by the two lines given algebraically asl1x+m1y+n1=0{\displaystyle l_{1}x+m_{1}y+n_{1}=0}  andl2x+m2y+n2=0,{\displaystyle l_{2}x+m_{2}y+n_{2}=0,}  then the internal and external bisectors are given by the two equations[2]: p.15 

l1x+m1y+n1l12+m12=±l2x+m2y+n2l22+m22.{\displaystyle {\frac {l_{1}x+m_{1}y+n_{1}}{\sqrt {l_{1}^{2}+m_{1}^{2}}}}=\pm {\frac {l_{2}x+m_{2}y+n_{2}}{\sqrt {l_{2}^{2}+m_{2}^{2}}}}.} 

Triangle

edit

Concurrencies and collinearities

edit
 
The interior angle bisectors of a triangle areconcurrent in a point called theincenter of the triangle, as seen in the diagram.

The bisectors of twoexterior angles and the bisector of the otherinterior angle are concurrent.[3]: p.149 

Three intersection points, each of an external angle bisector with the oppositeextended side, arecollinear (fall on the same line as each other).[3]: p. 149 

Three intersection points, two of them between an interior angle bisector and the opposite side, and the third between the other exterior angle bisector and the opposite side extended, are collinear.[3]: p. 149 

Angle bisector theorem

edit
 
In this diagram, BD:DC = AB:AC.

The angle bisector theorem is concerned with the relativelengths of the two segments that atriangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.

Lengths

edit

If the side lengths of a triangle area,b,c{\displaystyle a,b,c} , the semiperimeters=(a+b+c)/2,{\displaystyle s=(a+b+c)/2,}  and A is the angle opposite sidea{\displaystyle a} , then the length of the internal bisector of angle A is[3]: p. 70 

2bcs(sa)b+c,{\displaystyle {\frac {2{\sqrt {bcs(s-a)}}}{b+c}},} 

or in trigonometric terms,[4]

2bcb+ccosA2.{\displaystyle {\frac {2bc}{b+c}}\cos {\frac {A}{2}}.} 

If the internal bisector of angle A in triangle ABC has lengthta{\displaystyle t_{a}}  and if this bisector divides the side opposite A into segments of lengthsm andn, then[3]: p.70 

ta2+mn=bc{\displaystyle t_{a}^{2}+mn=bc} 

whereb andc are the side lengths opposite vertices B and C; and the side opposite A is divided in the proportionb:c.

If the internal bisectors of angles A, B, and C have lengthsta,tb,{\displaystyle t_{a},t_{b},}  andtc{\displaystyle t_{c}} , then[5]

(b+c)2bcta2+(c+a)2catb2+(a+b)2abtc2=(a+b+c)2.{\displaystyle {\frac {(b+c)^{2}}{bc}}t_{a}^{2}+{\frac {(c+a)^{2}}{ca}}t_{b}^{2}+{\frac {(a+b)^{2}}{ab}}t_{c}^{2}=(a+b+c)^{2}.} 

No two non-congruent triangles share the same set of three internal angle bisector lengths.[6][7]

Integer triangles

edit

There existinteger triangles with a rational angle bisector.

Quadrilateral

edit

The internal angle bisectors of aconvexquadrilateral either form acyclic quadrilateral (that is, the four intersection points of adjacent angle bisectors areconcyclic),[8] or they areconcurrent. In the latter case the quadrilateral is atangential quadrilateral.

Rhombus

edit

Each diagonal of arhombus bisects opposite angles.

Ex-tangential quadrilateral

edit

The excenter of anex-tangential quadrilateral lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where theextensions of opposite sides intersect.

Parabola

edit
 
BE bisects ∠FEC

Thetangent to aparabola at any point bisects the angle between the line joining the point to the focus and the line from the point andperpendicular to the directrix.

Bisectors of the sides of a polygon

edit

Triangle

edit

Medians

edit

Each of the threemedians of a triangle is a line segment going through onevertex and the midpoint of the opposite side, so it bisects that side (though not in general perpendicularly). The three medians intersect each other at a point which is called thecentroid of the triangle, which is itscenter of mass if it has uniform density; thus any line through a triangle's centroid and one of its vertices bisects the opposite side. The centroid is twice as close to the midpoint of any one side as it is to the opposite vertex.

Perpendicular bisectors

edit
Main article:Circumcircle

The interiorperpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at thecircumcenter (the center of the circle through the three vertices). Thus any line through a triangle's circumcenter and perpendicular to a side bisects that side.

In anacute triangle the circumcenter divides the interior perpendicular bisectors of the two shortest sides in equal proportions. In anobtuse triangle the two shortest sides' perpendicular bisectors (extended beyond their opposite triangle sides to the circumcenter) are divided by their respective intersecting triangle sides in equal proportions.[9]: Corollaries 5 and 6 

For any triangle the interior perpendicular bisectors are given bypa=2aTa2+b2c2,{\displaystyle p_{a}={\tfrac {2aT}{a^{2}+b^{2}-c^{2}}},} pb=2bTa2+b2c2,{\displaystyle p_{b}={\tfrac {2bT}{a^{2}+b^{2}-c^{2}}},}  andpc=2cTa2b2+c2,{\displaystyle p_{c}={\tfrac {2cT}{a^{2}-b^{2}+c^{2}}},}  where the sides areabc{\displaystyle a\geq b\geq c}  and the area isT.{\displaystyle T.} [9]: Thm 2 

Quadrilateral

edit

The twobimedians of aconvexquadrilateral are the line segments that connect the midpoints of opposite sides, hence each bisecting two sides. The two bimedians and the line segment joining the midpoints of the diagonals are concurrent at a point called the "vertex centroid" and are all bisected by this point.[10]: p.125 

The four "maltitudes" of a convex quadrilateral are the perpendiculars to a side through the midpoint of the opposite side, hence bisecting the latter side. If the quadrilateral iscyclic (inscribed in a circle), these maltitudes areconcurrent at (all meet at) a common point called the "anticenter".

Brahmagupta's theorem states that if a cyclic quadrilateral isorthodiagonal (that is, hasperpendiculardiagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side.

Theperpendicular bisector construction forms a quadrilateral from the perpendicular bisectors of the sides of another quadrilateral.

Area bisectors and perimeter bisectors

edit

Triangle

edit

There is an infinitude of lines that bisect thearea of atriangle. Three of them are themedians of the triangle (which connect the sides' midpoints with the opposite vertices), and these areconcurrent at the triangle'scentroid; indeed, they are the only area bisectors that go through the centroid. Three other area bisectors are parallel to the triangle's sides; each of these intersects the other two sides so as to divide them into segments with the proportions2+1:1{\displaystyle {\sqrt {2}}+1:1} .[11] These six lines are concurrent three at a time: in addition to the three medians being concurrent, any one median is concurrent with two of the side-parallel area bisectors.

Theenvelope of the infinitude of area bisectors is adeltoid (broadly defined as a figure with three vertices connected by curves that are concave to the exterior of the deltoid, making the interior points a non-convex set).[11] The vertices of the deltoid are at the midpoints of the medians; all points inside the deltoid are on three different area bisectors, while all points outside it are on just one.[1]The sides of the deltoid are arcs ofhyperbolas that areasymptotic to the extended sides of the triangle.[11] The ratio of the area of the envelope of area bisectors to the area of the triangle is invariant for all triangles, and equals34loge(2)12,{\displaystyle {\tfrac {3}{4}}\log _{e}(2)-{\tfrac {1}{2}},}  i.e. 0.019860... or less than 2%.

Acleaver of a triangle is a line segment that bisects theperimeter of the triangle and has one endpoint at the midpoint of one of the three sides. The three cleaversconcur at (all pass through) thecenter of the Spieker circle, which is theincircle of themedial triangle. The cleavers are parallel to the angle bisectors.

Asplitter of a triangle is a line segment having one endpoint at one of the three vertices of the triangle and bisecting the perimeter. The three splitters concur at theNagel point of the triangle.

Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter (the center of itsincircle). There are either one, two, or three of these for any given triangle. A line through the incenter bisects one of the area or perimeter if and only if it also bisects the other.[12]

Parallelogram

edit

Any line through the midpoint of aparallelogram bisects the area[11] and the perimeter.

Circle and ellipse

edit

All area bisectors and perimeter bisectors of a circle or other ellipse go through thecenter, and anychords through the center bisect the area and perimeter. In the case of a circle they are thediameters of the circle.

Bisectors of diagonals

edit

Parallelogram

edit

Thediagonals of a parallelogram bisect each other.

Quadrilateral

edit

If a line segment connecting the diagonals of a quadrilateral bisects both diagonals, then this line segment (theNewton Line) is itself bisected by thevertex centroid.

Volume bisectors

edit

A plane that divides two opposite edges of a tetrahedron in a given ratio also divides the volume of the tetrahedron in the same ratio. Thus any plane containing a bimedian (connector of opposite edges' midpoints) of a tetrahedron bisects the volume of the tetrahedron[13][14]: pp.89–90 

References

edit
  1. ^Weisstein, Eric W. "Exterior Angle Bisector." From MathWorld--A Wolfram Web Resource.
  2. ^Spain, Barry.Analytical Conics, Dover Publications, 2007 (orig. 1957).
  3. ^abcdeJohnson, Roger A.,Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
  4. ^Oxman, Victor. "On the existence of triangles with given lengths of one side and two adjacent angle bisectors",Forum Geometricorum 4, 2004, 215–218.http://forumgeom.fau.edu/FG2004volume4/FG200425.pdf
  5. ^Simons, Stuart.Mathematical Gazette 93, March 2009, 115-116.
  6. ^Mironescu, P., and Panaitopol, L., "The existence of a triangle with prescribed angle bisector lengths",American Mathematical Monthly 101 (1994): 58–60.
  7. ^Oxman, Victor, "A purely geometric proof of the uniqueness of a triangle with prescribed angle bisectors",Forum Geometricorum 8 (2008): 197–200.
  8. ^Weisstein, Eric W. "Quadrilateral." From MathWorld--A Wolfram Web Resource.http://mathworld.wolfram.com/Quadrilateral.html
  9. ^abMitchell, Douglas W. (2013), "Perpendicular Bisectors of Triangle Sides",Forum Geometricorum 13, 53-59.http://forumgeom.fau.edu/FG2013volume13/FG201307.pdf
  10. ^Altshiller-Court, Nathan,College Geometry, Dover Publ., 2007.
  11. ^abcdDunn, Jas. A.; Pretty, Jas. E. (May 1972). "Halving a triangle".The Mathematical Gazette.56 (396):105–108.doi:10.2307/3615256.JSTOR 3615256.
  12. ^Kodokostas, Dimitrios, "Triangle Equalizers,"Mathematics Magazine 83, April 2010, pp. 141-146.
  13. ^Weisstein, Eric W. "Tetrahedron." From MathWorld--A Wolfram Web Resource.http://mathworld.wolfram.com/Tetrahedron.html
  14. ^Altshiller-Court, N. "The tetrahedron." Ch. 4 inModern Pure Solid Geometry: Chelsea, 1979.

External links

edit

This article incorporates material from Angle bisector onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.


[8]ページ先頭

©2009-2025 Movatter.jp